BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

527 related articles for article (PubMed ID: 23947834)

  • 1. Arsenic removal from contaminated water using three-dimensional graphene-carbon nanotube-iron oxide nanostructures.
    Vadahanambi S; Lee SH; Kim WJ; Oh IK
    Environ Sci Technol; 2013 Sep; 47(18):10510-7. PubMed ID: 23947834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic graphene-carbon nanotube iron nanocomposites as adsorbents and antibacterial agents for water purification.
    Sharma VK; McDonald TJ; Kim H; Garg VK
    Adv Colloid Interface Sci; 2015 Nov; 225():229-40. PubMed ID: 26498500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of aromatic organic contaminants by graphene nanosheets: comparison with carbon nanotubes and activated carbon.
    Apul OG; Wang Q; Zhou Y; Karanfil T
    Water Res; 2013 Mar; 47(4):1648-54. PubMed ID: 23313232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene--nanotube--iron hierarchical nanostructure as lithium ion battery anode.
    Lee SH; Sridhar V; Jung JH; Karthikeyan K; Lee YS; Mukherjee R; Koratkar N; Oh IK
    ACS Nano; 2013 May; 7(5):4242-51. PubMed ID: 23550743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of arsenic from water by iron oxide nanoparticles impregnated on carbon nanotubes.
    Tawabini BS; Al-Khaldi SF; Khaled MM; Atieh MA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(3):215-23. PubMed ID: 21279891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water.
    Zhang QL; Lin YC; Chen X; Gao NY
    J Hazard Mater; 2007 Sep; 148(3):671-8. PubMed ID: 17434260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene Aerogels Decorated with α-FeOOH Nanoparticles for Efficient Adsorption of Arsenic from Contaminated Waters.
    Andjelkovic I; Tran DN; Kabiri S; Azari S; Markovic M; Losic D
    ACS Appl Mater Interfaces; 2015 May; 7(18):9758-66. PubMed ID: 25871444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A graphene oxide-carbon nanotube grid for high-resolution transmission electron microscopy of nanomaterials.
    Zhang L; Zhang H; Zhou R; Chen Z; Li Q; Fan S; Ge G; Liu R; Jiang K
    Nanotechnology; 2011 Sep; 22(38):385704. PubMed ID: 21878720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and characterization of iron oxide ceramic membranes for arsenic removal.
    Sabbatini P; Yrazu F; Rossi F; Thern G; Marajofsky A; Fidalgo de Cortalezzi MM
    Water Res; 2010 Nov; 44(19):5702-12. PubMed ID: 20599241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-high arsenic adsorption by graphene oxide iron nanohybrid: Removal mechanisms and potential applications.
    Das TK; Sakthivel TS; Jeyaranjan A; Seal S; Bezbaruah AN
    Chemosphere; 2020 Aug; 253():126702. PubMed ID: 32302903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of nitrogen-doped graphene nanoscrolls by adsorption of magnetic γ-Fe2O3 nanoparticles.
    Sharifi T; Gracia-Espino E; Barzegar HR; Jia X; Nitze F; Hu G; Nordblad P; Tai CW; Wågberg T
    Nat Commun; 2013; 4():2319. PubMed ID: 23942280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic removal by iron oxide coated sponge: treatment and waste management.
    Nguyen TV; Rahman A; Vigneswaran S; Ngo HH; Kandasamy J; Nguyen DT; Do TA; Nguyen TK
    Water Sci Technol; 2009; 60(6):1489-95. PubMed ID: 19759451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Akaganeite decorated graphene oxide composite for arsenic adsorption/removal and its proconcentration at ultra-trace level.
    Chen ML; Sun Y; Huo CB; Liu C; Wang JH
    Chemosphere; 2015 Jul; 130():52-8. PubMed ID: 25800270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A three-dimensional carbon nanotube network for water treatment.
    Camilli L; Pisani C; Gautron E; Scarselli M; Castrucci P; D'Orazio F; Passacantando M; Moscone D; De Crescenzi M
    Nanotechnology; 2014 Feb; 25(6):065701. PubMed ID: 24434944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructured Mn-Fe Binary Mixed Oxide: Synthesis, Characterization and Evaluation for Arsenic Removal.
    Pillewan P; Mukherjee S; Bansiwal A; Rayalu S
    J Environ Sci Eng; 2014 Jul; 56(3):263-8. PubMed ID: 26563075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene-based composite with γ-Fe2O3 nanoparticle for the high-performance removal of endocrine-disrupting compounds from water.
    Sinha A; Jana NR
    Chem Asian J; 2013 Apr; 8(4):786-91. PubMed ID: 23401314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective aqueous arsenic removal using zero valent iron doped MWCNT synthesized by in situ CVD method using natural α-Fe
    Alijani H; Shariatinia Z
    Chemosphere; 2017 Mar; 171():502-511. PubMed ID: 28038422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile template-free fabrication of hollow nestlike α-Fe₂O₃ nanostructures for water treatment.
    Wei Z; Xing R; Zhang X; Liu S; Yu H; Li P
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):598-604. PubMed ID: 23131138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon.
    Mondal P; Majumder CB; Mohanty B
    J Hazard Mater; 2008 Feb; 150(3):695-702. PubMed ID: 17574333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The adsorption of Sb(III) in aqueous solution by Fe2O3-modified carbon nanotubes.
    Yu T; Zeng C; Ye M; Shao Y
    Water Sci Technol; 2013; 68(3):658-64. PubMed ID: 23925195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.