These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 23947845)

  • 1. Effective tight-binding models for excitons in branched conjugated molecules.
    Li H; Malinin SV; Tretiak S; Chernyak VY
    J Chem Phys; 2013 Aug; 139(6):064109. PubMed ID: 23947845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exciton scattering on symmetric branching centers in conjugated molecules.
    Li H; Wu C; Malinin SV; Tretiak S; Chernyak VY
    J Phys Chem B; 2011 May; 115(18):5465-75. PubMed ID: 21194223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excited-State Structure Modifications Due to Molecular Substituents and Exciton Scattering in Conjugated Molecules.
    Li H; Catanzaro MJ; Tretiak S; Chernyak VY
    J Phys Chem Lett; 2014 Feb; 5(4):641-7. PubMed ID: 26270830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How Geometric Distortions Scatter Electronic Excitations in Conjugated Macromolecules.
    Shi T; Li H; Tretiak S; Chernyak VY
    J Phys Chem Lett; 2014 Nov; 5(22):3946-52. PubMed ID: 26276475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exciton scattering approach for branched conjugated molecules and complexes. II. Extraction of the exciton scattering parameters from quantum-chemical calculations.
    Wu C; Malinin SV; Tretiak S; Chernyak VY
    J Chem Phys; 2008 Nov; 129(17):174112. PubMed ID: 19045338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale modeling of electronic excitations in branched conjugated molecules using an exciton scattering approach.
    Wu C; Malinin SV; Tretiak S; Chernyak VY
    Phys Rev Lett; 2008 Feb; 100(5):057405. PubMed ID: 18352429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exciton scattering approach for branched conjugated molecules and complexes. III. Applications.
    Wu C; Malinin SV; Tretiak S; Chernyak VY
    J Chem Phys; 2008 Nov; 129(17):174113. PubMed ID: 19045339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exciton scattering approach for branched conjugated molecules and complexes. IV. Transition dipoles and optical spectra.
    Li H; Malinin SV; Tretiak S; Chernyak VY
    J Chem Phys; 2010 Mar; 132(12):124103. PubMed ID: 20370110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exciton scattering approach for branched conjugated molecules and complexes. I. Formalism.
    Wu C; Malinin SV; Tretiak S; Chernyak VY
    J Chem Phys; 2008 Nov; 129(17):174111. PubMed ID: 19045337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge-transfer excitons at organic semiconductor surfaces and interfaces.
    Zhu XY; Yang Q; Muntwiler M
    Acc Chem Res; 2009 Nov; 42(11):1779-87. PubMed ID: 19378979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exciton multiplication from first principles.
    Jaeger HM; Hyeon-Deuk K; Prezhdo OV
    Acc Chem Res; 2013 Jun; 46(6):1280-9. PubMed ID: 23459543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural Atomic Orbital Representation for Optical Spectra Calculations in the Exciton Scattering Approach.
    Li H; Chernyak VY; Tretiak S
    J Phys Chem Lett; 2012 Dec; 3(24):3734-9. PubMed ID: 26291103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exciton-exciton correlations revealed by two-quantum, two-dimensional fourier transform optical spectroscopy.
    Stone KW; Turner DB; Gundogdu K; Cundiff ST; Nelson KA
    Acc Chem Res; 2009 Sep; 42(9):1452-61. PubMed ID: 19691277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exciton states and optical properties of carbon nanotubes.
    Ajiki H
    J Phys Condens Matter; 2012 Dec; 24(48):483001. PubMed ID: 23139202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recombination of polaron and exciton in conjugated polymers.
    Meng Y; Liu XJ; Di B; An Z
    J Chem Phys; 2009 Dec; 131(24):244502. PubMed ID: 20059074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The properties of bio-energy transport and influence of structure nonuniformity and temperature of systems on energy transport along polypeptide chains.
    Pang XF
    Prog Biophys Mol Biol; 2012 Jan; 108(1-2):1-46. PubMed ID: 21951575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitons in conjugated polymers: wavefunctions, symmetries, and quantum numbers.
    Barford W; Paiboonvorachat N
    J Chem Phys; 2008 Oct; 129(16):164716. PubMed ID: 19045307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The spectral signatures of Frenkel polarons in H- and J-aggregates.
    Spano FC
    Acc Chem Res; 2010 Mar; 43(3):429-39. PubMed ID: 20014774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge excitations in cuprate and nickelate in resonant inelastic x-ray scattering.
    Takahashi M; Igarashi J; Semba T
    J Phys Condens Matter; 2009 Feb; 21(6):064236. PubMed ID: 21715938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tight-binding model predicts exciton energetics and structure for photovoltaic molecules.
    Jindal V; Aldahdooh MKR; Gomez ED; Janik MJ; Milner ST
    Phys Chem Chem Phys; 2024 May; 26(21):15472-15483. PubMed ID: 38751347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.