These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 23947880)

  • 1. Computational design of chemically propelled catalytic nanorotors.
    Chen Y; Shi Y
    J Chem Phys; 2013 Aug; 139(6):064707. PubMed ID: 23947880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational design and synthesis of catalytically driven nanorotors.
    Qin L; Banholzer MJ; Xu X; Huang L; Mirkin CA
    J Am Chem Soc; 2007 Dec; 129(48):14870-1. PubMed ID: 17988136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of self-propelled nanomotors in chemically active media.
    Thakur S; Kapral R
    J Chem Phys; 2011 Jul; 135(2):024509. PubMed ID: 21766959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational study of nanometer-scale self-propulsion enabled by asymmetric chemical catalysis.
    Shi Y; Huang L; Brenner DW
    J Chem Phys; 2009 Jul; 131(1):014705. PubMed ID: 19586115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of chemically propelled nanodimer motors.
    Tao YG; Kapral R
    J Chem Phys; 2008 Apr; 128(16):164518. PubMed ID: 18447470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanomotor dynamics in a chemically oscillating medium.
    Robertson B; Kapral R
    J Chem Phys; 2015 Apr; 142(15):154902. PubMed ID: 25903905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic self-propelled nanorotors.
    Fournier-Bidoz S; Arsenault AC; Manners I; Ozin GA
    Chem Commun (Camb); 2005 Jan; (4):441-3. PubMed ID: 15654363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanolocomotion - catalytic nanomotors and nanorotors.
    Mirkovic T; Zacharia NS; Scholes GD; Ozin GA
    Small; 2010 Jan; 6(2):159-67. PubMed ID: 19911393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Velocity-dependent changes of rotational axes during the control of unconstrained 3D arm motions depend on initial instruction on limb position.
    Isableu B; Hansen C; Rezzoug N; Gorce P; Pagano CC
    Hum Mov Sci; 2013 Apr; 32(2):290-300. PubMed ID: 23725828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of arms in somersaulting from compliant surfaces: a simulation study of springboard standing dives.
    Cheng KB; Hubbard M
    Hum Mov Sci; 2008 Feb; 27(1):80-95. PubMed ID: 17920146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic nanomotors: self-propelled sphere dimers.
    Valadares LF; Tao YG; Zacharia NS; Kitaev V; Galembeck F; Kapral R; Ozin GA
    Small; 2010 Feb; 6(4):565-72. PubMed ID: 20108240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum dynamics of rovibrational transitions in H2-H2 collisions: internal energy and rotational angular momentum conservation effects.
    Fonseca dos Santos S; Balakrishnan N; Lepp S; Quéméner G; Forrey RC; Hinde RJ; Stancil PC
    J Chem Phys; 2011 Jun; 134(21):214303. PubMed ID: 21663358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of angular momentum in collision-induced vibration-rotation relaxation in polyatomics.
    McCaffery AJ; Osborne MA; Marsh RJ; Lawrance WD; Waclawik ER
    J Chem Phys; 2004 Jul; 121(1):169-80. PubMed ID: 15260535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational Slippage Determines Rotational Frequency in Five-Component Nanorotors.
    Samanta SK; Rana A; Schmittel M
    Angew Chem Int Ed Engl; 2016 Feb; 55(6):2267-72. PubMed ID: 26836349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rotation detection in light-driven nanorotors.
    Jones PH; Palmisano F; Bonaccorso F; Gucciardi PG; Calogero G; Ferrari AC; Maragó OM
    ACS Nano; 2009 Oct; 3(10):3077-84. PubMed ID: 19856981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization.
    Wulff G; Liu J
    Acc Chem Res; 2012 Feb; 45(2):239-47. PubMed ID: 21967389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemically powered nanodimers.
    Rückner G; Kapral R
    Phys Rev Lett; 2007 Apr; 98(15):150603. PubMed ID: 17501331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of chemically powered nanodimer motors subject to an external force.
    Tao YG; Kapral R
    J Chem Phys; 2009 Jul; 131(2):024113. PubMed ID: 19603976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perspective: nanomotors without moving parts that propel themselves in solution.
    Kapral R
    J Chem Phys; 2013 Jan; 138(2):020901. PubMed ID: 23320656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-component nanorotors generated from fusion of complexes and post-fusion metal-metal exchange.
    Goswami A; Paul I; Schmittel M
    Chem Commun (Camb); 2017 May; 53(37):5186-5189. PubMed ID: 28439584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.