BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 23947893)

  • 1. A structure-based model fails to probe the mechanical unfolding pathways of the titin I27 domain.
    Kouza M; Hu CK; Li MS; Kolinski A
    J Chem Phys; 2013 Aug; 139(6):065103. PubMed ID: 23947893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical unfolding of a titin Ig domain: structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering.
    Fowler SB; Best RB; Toca Herrera JL; Rutherford TJ; Steward A; Paci E; Karplus M; Clarke J
    J Mol Biol; 2002 Sep; 322(4):841-9. PubMed ID: 12270718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of equilibrium folding and unfolding transitions of titin immunoglobulin domain under constant forces.
    Chen H; Yuan G; Winardhi RS; Yao M; Popa I; Fernandez JM; Yan J
    J Am Chem Soc; 2015 Mar; 137(10):3540-6. PubMed ID: 25726700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of temperature on mechanical resistance of the native and intermediate states of I27.
    Taniguchi Y; Brockwell DJ; Kawakami M
    Biophys J; 2008 Dec; 95(11):5296-305. PubMed ID: 18775959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-speed force spectroscopy unfolds titin at the velocity of molecular dynamics simulations.
    Rico F; Gonzalez L; Casuso I; Puig-Vidal M; Scheuring S
    Science; 2013 Nov; 342(6159):741-3. PubMed ID: 24202172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational investigation of the effect of thermal perturbation on the mechanical unfolding of titin I27.
    Bung N; Priyakumar UD
    J Mol Model; 2012 Jun; 18(6):2823-9. PubMed ID: 22119788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependence of protein mechanical unfolding pathways on pulling speeds.
    Li MS; Kouza M
    J Chem Phys; 2009 Apr; 130(14):145102. PubMed ID: 19368475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring Unfolding of Titin I27 Single and Bi Domain with High-Pressure NMR Spectroscopy.
    Herrada I; Barthe P; Vanheusden M; DeGuillen K; Mammri L; Delbecq S; Rico F; Roumestand C
    Biophys J; 2018 Jul; 115(2):341-352. PubMed ID: 30021109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elasticity of the Transition State Leading to an Unexpected Mechanical Stabilization of Titin Immunoglobulin Domains.
    Yuan G; Le S; Yao M; Qian H; Zhou X; Yan J; Chen H
    Angew Chem Int Ed Engl; 2017 May; 56(20):5490-5493. PubMed ID: 28394039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics from nonequilibrium single-molecule pulling experiments.
    Hummer G; Szabo A
    Biophys J; 2003 Jul; 85(1):5-15. PubMed ID: 12829459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steered molecular dynamics studies of titin I1 domain unfolding.
    Gao M; Wilmanns M; Schulten K
    Biophys J; 2002 Dec; 83(6):3435-45. PubMed ID: 12496110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical unfolding of a titin Ig domain: structure of transition state revealed by combining atomic force microscopy, protein engineering and molecular dynamics simulations.
    Best RB; Fowler SB; Herrera JL; Steward A; Paci E; Clarke J
    J Mol Biol; 2003 Jul; 330(4):867-77. PubMed ID: 12850153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved strategy for generating forces in steered molecular dynamics: the mechanical unfolding of titin, e2lip3 and ubiquitin.
    Ho BK; Agard DA
    PLoS One; 2010 Sep; 5(9):. PubMed ID: 20927369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New method for deciphering free energy landscape of three-state proteins.
    Li MS; Gabovich AM; Voitenko AI
    J Chem Phys; 2008 Sep; 129(10):105102. PubMed ID: 19044939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring biological materials mechanics with atomic force microscopy - Mechanical unfolding of biopolymers.
    Gil-Redondo JC; Weber A; Toca-Herrera JL
    Microsc Res Tech; 2022 Aug; 85(8):3025-3036. PubMed ID: 35502131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical unfolding of TNfn3: the unfolding pathway of a fnIII domain probed by protein engineering, AFM and MD simulation.
    Ng SP; Rounsevell RW; Steward A; Geierhaas CD; Williams PM; Paci E; Clarke J
    J Mol Biol; 2005 Jul; 350(4):776-89. PubMed ID: 15964016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of core destabilization on the mechanical resistance of I27.
    Brockwell DJ; Beddard GS; Clarkson J; Zinober RC; Blake AW; Trinick J; Olmsted PD; Smith DA; Radford SE
    Biophys J; 2002 Jul; 83(1):458-72. PubMed ID: 12080133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature and chemical denaturant dependence of forced unfolding of titin I27.
    Botello E; Harris NC; Sargent J; Chen WH; Lin KJ; Kiang CH
    J Phys Chem B; 2009 Aug; 113(31):10845-8. PubMed ID: 19719273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Secondary-Structure Folding on the Mutually Exclusive Folding Process of GL5/I27 Protein: Evidence from Molecular Dynamics Simulations.
    Wang Q; Wang Y; Chen G
    Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27886109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can non-mechanical proteins withstand force? Stretching barnase by atomic force microscopy and molecular dynamics simulation.
    Best RB; Li B; Steward A; Daggett V; Clarke J
    Biophys J; 2001 Oct; 81(4):2344-56. PubMed ID: 11566804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.