These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 23947918)
1. Evaluation of ATR-FTIR spectroscopy with multivariate analysis to study the binding mechanisms of ZnO nanoparticles or Zn2+ to Chelex-100 or metsorb. Pouran HM; Llabjani V; Martin FL; Zhang H Environ Sci Technol; 2013 Oct; 47(19):11115-21. PubMed ID: 23947918 [TBL] [Abstract][Full Text] [Related]
2. Measurement of ZnO nanoparticles using diffusive gradients in thin films: binding and diffusional characteristics. Pouran HM; Martin FL; Zhang H Anal Chem; 2014 Jun; 86(12):5906-13. PubMed ID: 24831848 [TBL] [Abstract][Full Text] [Related]
3. DGT measurement of dissolved aluminum species in waters: comparing Chelex-100 and titanium dioxide-based adsorbents. Panther JG; Bennett WW; Teasdale PR; Welsh DT; Zhao H Environ Sci Technol; 2012 Feb; 46(4):2267-75. PubMed ID: 22268706 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of DGT techniques for measuring inorganic uranium species in natural waters: Interferences, deployment time and speciation. Turner GS; Mills GA; Teasdale PR; Burnett JL; Amos S; Fones GR Anal Chim Acta; 2012 Aug; 739():37-46. PubMed ID: 22819048 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous measurement of trace metal and oxyanion concentrations in water using diffusive gradients in thin films with a Chelex-Metsorb mixed binding layer. Panther JG; Bennett WW; Welsh DT; Teasdale PR Anal Chem; 2014 Jan; 86(1):427-34. PubMed ID: 24251902 [TBL] [Abstract][Full Text] [Related]
6. Measuring ZnO nanoparticles available concentrations in contaminated soils using the diffusive gradient in thin-films (DGT) technique. Pouran H; Alkasbi M; Lahive E; Lofts S; Zhang H Sci Total Environ; 2021 Nov; 793():148654. PubMed ID: 34182444 [TBL] [Abstract][Full Text] [Related]
7. In situ evaluation of DGT techniques for measurement of trace metals in estuarine waters: a comparison of four binding layers with open and restricted diffusive layers. Shiva AH; Bennett WW; Welsh DT; Teasdale PR Environ Sci Process Impacts; 2016 Jan; 18(1):51-63. PubMed ID: 26678534 [TBL] [Abstract][Full Text] [Related]
8. Direct in situ measurement of dissolved zinc in the presence of zinc oxide nanoparticles using anodic stripping voltammetry. Jiang C; Hsu-Kim H Environ Sci Process Impacts; 2014 Nov; 16(11):2536-44. PubMed ID: 25220562 [TBL] [Abstract][Full Text] [Related]
9. Immobilization of Aspergillus oryzae β galactosidase on zinc oxide nanoparticles via simple adsorption mechanism. Husain Q; Ansari SA; Alam F; Azam A Int J Biol Macromol; 2011 Jul; 49(1):37-43. PubMed ID: 21439994 [TBL] [Abstract][Full Text] [Related]
10. Toxicological effect of ZnO nanoparticles based on bacteria. Huang Z; Zheng X; Yan D; Yin G; Liao X; Kang Y; Yao Y; Huang D; Hao B Langmuir; 2008 Apr; 24(8):4140-4. PubMed ID: 18341364 [TBL] [Abstract][Full Text] [Related]
11. No evidence of the genotoxic potential of gold, silver, zinc oxide and titanium dioxide nanoparticles in the SOS chromotest. Nam SH; Kim SW; An YJ J Appl Toxicol; 2013 Oct; 33(10):1061-9. PubMed ID: 23161381 [TBL] [Abstract][Full Text] [Related]
12. Fate of zinc oxide nanoparticles during anaerobic digestion of wastewater and post-treatment processing of sewage sludge. Lombi E; Donner E; Tavakkoli E; Turney TW; Naidu R; Miller BW; Scheckel KG Environ Sci Technol; 2012 Aug; 46(16):9089-96. PubMed ID: 22816872 [TBL] [Abstract][Full Text] [Related]
14. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Jayaseelan C; Rahuman AA; Kirthi AV; Marimuthu S; Santhoshkumar T; Bagavan A; Gaurav K; Karthik L; Rao KV Spectrochim Acta A Mol Biomol Spectrosc; 2012 May; 90():78-84. PubMed ID: 22321514 [TBL] [Abstract][Full Text] [Related]
15. Titanium dioxide-based DGT technique for in situ measurement of dissolved reactive phosphorus in fresh and marine waters. Panther JG; Teasdale PR; Bennett WW; Welsh DT; Zhao H Environ Sci Technol; 2010 Dec; 44(24):9419-24. PubMed ID: 21090745 [TBL] [Abstract][Full Text] [Related]
16. Chemical vapor synthesis of size-selected zinc oxide nanoparticles. Polarz S; Roy A; Merz M; Halm S; Schröder D; Schneider L; Bacher G; Kruis FE; Driess M Small; 2005 May; 1(5):540-52. PubMed ID: 17193484 [TBL] [Abstract][Full Text] [Related]
17. Conformational changes in human plasma proteins induced by metal oxide nanoparticles. Simón-Vázquez R; Lozano-Fernández T; Peleteiro-Olmedo M; González-Fernández Á Colloids Surf B Biointerfaces; 2014 Jan; 113():198-206. PubMed ID: 24095988 [TBL] [Abstract][Full Text] [Related]
18. Regulation of MicroRNAs, and the Correlations of MicroRNAs and Their Targeted Genes by Zinc Oxide Nanoparticles in Ovarian Granulosa Cells. Zhao Y; Li L; Min LJ; Zhu LQ; Sun QY; Zhang HF; Liu XQ; Zhang WD; Ge W; Wang JJ; Liu JC; Hao ZH PLoS One; 2016; 11(5):e0155865. PubMed ID: 27196542 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of a titanium dioxide-based DGT technique for measuring inorganic uranium species in fresh and marine waters. Hutchins CM; Panther JG; Teasdale PR; Wang F; Stewart RR; Bennett WW; Zhao H Talanta; 2012 Aug; 97():550-6. PubMed ID: 22841121 [TBL] [Abstract][Full Text] [Related]
20. Sustainable microbial cell nanofactory for zinc oxide nanoparticles production by zinc-tolerant probiotic Lactobacillus plantarum strain TA4. Mohd Yusof H; Mohamad R; Zaidan UH; Rahman NA Microb Cell Fact; 2020 Jan; 19(1):10. PubMed ID: 31941498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]