These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 23948149)
1. Effects of ocean warming and acidification on fertilization in the Antarctic echinoid Sterechinus neumayeri across a range of sperm concentrations. Ho MA; Price C; King CK; Virtue P; Byrne M Mar Environ Res; 2013 Sep; 90():136-41. PubMed ID: 23948149 [TBL] [Abstract][Full Text] [Related]
2. Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming. Byrne M; Ho MA; Koleits L; Price C; King CK; Virtue P; Tilbrook B; Lamare M Glob Chang Biol; 2013 Jul; 19(7):2264-75. PubMed ID: 23504957 [TBL] [Abstract][Full Text] [Related]
3. Sea urchin fertilization in a warm, acidified and high pCO2 ocean across a range of sperm densities. Byrne M; Soars N; Selvakumaraswamy P; Dworjanyn SA; Davis AR Mar Environ Res; 2010 May; 69(4):234-9. PubMed ID: 19913293 [TBL] [Abstract][Full Text] [Related]
4. Ocean acidification has little effect on developmental thermal windows of echinoderms from Antarctica to the tropics. Karelitz SE; Uthicke S; Foo SA; Barker MF; Byrne M; Pecorino D; Lamare MD Glob Chang Biol; 2017 Feb; 23(2):657-672. PubMed ID: 27497050 [TBL] [Abstract][Full Text] [Related]
5. Effects of ocean warming and acidification on survival, growth and skeletal development in the early benthic juvenile sea urchin (Heliocidaris erythrogramma). Wolfe K; Dworjanyn SA; Byrne M Glob Chang Biol; 2013 Sep; 19(9):2698-707. PubMed ID: 23649847 [TBL] [Abstract][Full Text] [Related]
6. Ocean acidification and fertilization in the antarctic sea urchin Sterechinus neumayeri: the importance of polyspermy. Sewell MA; Millar RB; Yu PC; Kapsenberg L; Hofmann GE Environ Sci Technol; 2014; 48(1):713-22. PubMed ID: 24299658 [TBL] [Abstract][Full Text] [Related]
8. Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. Byrne M; Ho M; Selvakumaraswamy P; Nguyen HD; Dworjanyn SA; Davis AR Proc Biol Sci; 2009 May; 276(1663):1883-8. PubMed ID: 19324767 [TBL] [Abstract][Full Text] [Related]
9. Could the acid-base status of Antarctic sea urchins indicate a better-than-expected resilience to near-future ocean acidification? Collard M; De Ridder C; David B; Dehairs F; Dubois P Glob Chang Biol; 2015 Feb; 21(2):605-17. PubMed ID: 25270127 [TBL] [Abstract][Full Text] [Related]
10. Acclimation of the Antarctic sea urchin Sterechinus neumayeri to warmer temperatures involves a modulation of cellular machinery. Détrée C; Navarro JM; Figueroa A; Cardenas L Mar Environ Res; 2023 Jun; 188():105979. PubMed ID: 37099993 [TBL] [Abstract][Full Text] [Related]
11. Temperature modulates the response of the thermophilous sea urchin Arbacia lixula early life stages to CO2-driven acidification. Gianguzza P; Visconti G; Gianguzza F; Vizzini S; Sarà G; Dupont S Mar Environ Res; 2014 Feb; 93():70-7. PubMed ID: 23962538 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the Antarctic sea urchin (Sterechinus neumayeri) transcriptome and mitogenome: a molecular resource for phylogenetics, ecophysiology and global change biology. Dilly GF; Gaitán-Espitia JD; Hofmann GE Mol Ecol Resour; 2015 Mar; 15(2):425-36. PubMed ID: 25143045 [TBL] [Abstract][Full Text] [Related]
13. Impacts of Petroleum Fuels on Fertilization and Development of the Antarctic Sea Urchin Sterechinus neumayeri. Brown KE; King CK; Harrison PL Environ Toxicol Chem; 2020 Dec; 39(12):2527-2539. PubMed ID: 32946126 [TBL] [Abstract][Full Text] [Related]
14. Adult acclimation to combined temperature and pH stressors significantly enhances reproductive outcomes compared to short-term exposures. Suckling CC; Clark MS; Richard J; Morley SA; Thorne MAS; Harper EM; Peck LS J Anim Ecol; 2015 May; 84(3):773-784. PubMed ID: 25491898 [TBL] [Abstract][Full Text] [Related]
15. Unshelled abalone and corrupted urchins: development of marine calcifiers in a changing ocean. Byrne M; Ho M; Wong E; Soars NA; Selvakumaraswamy P; Shepard-Brennand H; Dworjanyn SA; Davis AR Proc Biol Sci; 2011 Aug; 278(1716):2376-83. PubMed ID: 21177689 [TBL] [Abstract][Full Text] [Related]
16. Sea urchins in a high-CO2 world: partitioned effects of body size, ocean warming and acidification on metabolic rate. Carey N; Harianto J; Byrne M J Exp Biol; 2016 Apr; 219(Pt 8):1178-86. PubMed ID: 26896541 [TBL] [Abstract][Full Text] [Related]
17. Robustness of larval development of intertidal sea urchin species to simulated ocean warming and acidification. García E; Hernández JC; Clemente S Mar Environ Res; 2018 Aug; 139():35-45. PubMed ID: 29753493 [TBL] [Abstract][Full Text] [Related]
18. Early development of congeneric sea urchins (Heliocidaris) with contrasting life history modes in a warming and high CO2 ocean. Hardy NA; Byrne M Mar Environ Res; 2014 Dec; 102():78-87. PubMed ID: 25115741 [TBL] [Abstract][Full Text] [Related]
19. Impacts of ocean acidification on sea urchin growth across the juvenile to mature adult life-stage transition is mitigated by warming. Dworjanyn SA; Byrne M Proc Biol Sci; 2018 Apr; 285(1876):. PubMed ID: 29643209 [TBL] [Abstract][Full Text] [Related]
20. The effects of temperature and pH on the reproductive ecology of sand dollars and sea urchins: Impacts on sperm swimming and fertilization. Leuchtenberger SG; Daleo M; Gullickson P; Delgado A; Lo C; Nishizaki MT PLoS One; 2022; 17(12):e0276134. PubMed ID: 36454769 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]