These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 23948153)

  • 21. Fibrous long spacing type collagen fibrils have a hierarchical internal structure.
    Wen CK; Goh MC
    Proteins; 2006 Jul; 64(1):227-33. PubMed ID: 16609970
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A model for type II collagen fibrils: distinctive D-band patterns in native and reconstituted fibrils compared with sequence data for helix and telopeptide domains.
    Ortolani F; Giordano M; Marchini M
    Biopolymers; 2000 Nov; 54(6):448-63. PubMed ID: 10951330
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A study of fibrous long spacing collagen ultrastructure and assembly by atomic force microscopy.
    Paige MF; Rainey JK; Goh MC
    Micron; 2001 Apr; 32(3):341-53. PubMed ID: 11006515
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hierarchical assembly and the onset of banding in fibrous long spacing collagen revealed by atomic force microscopy.
    Rainey JK; Wen CK; Goh MC
    Matrix Biol; 2002 Dec; 21(8):647-60. PubMed ID: 12524051
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrostatic interactions modulate the conformation of collagen I.
    Freudenberg U; Behrens SH; Welzel PB; Müller M; Grimmer M; Salchert K; Taeger T; Schmidt K; Pompe W; Werner C
    Biophys J; 2007 Mar; 92(6):2108-19. PubMed ID: 17208984
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal memory in self-assembled collagen fibril networks.
    de Wild M; Pomp W; Koenderink GH
    Biophys J; 2013 Jul; 105(1):200-10. PubMed ID: 23823240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oblique banding pattern in collagen fibrils reconstituted in vitro after trypsin treatment.
    Ghosh SK; Mitra HP
    Biochim Biophys Acta; 1975 Oct; 405(2):340-6. PubMed ID: 1180959
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical response of individual collagen fibrils in loaded tendon as measured by atomic force microscopy.
    Rigozzi S; Stemmer A; Müller R; Snedeker JG
    J Struct Biol; 2011 Oct; 176(1):9-15. PubMed ID: 21771659
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The collagen type I segment long spacing (SLS) and fibrillar forms: Formation by ATP and sulphonated diazo dyes.
    Harris JR; Lewis RJ
    Micron; 2016 Jul; 86():36-47. PubMed ID: 27162200
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anion-specific effects on the assembly of collagen layers mediated by magnesium ion on mica surface.
    Wang L; Guo Y; Li P; Song Y
    J Phys Chem B; 2014 Jan; 118(2):511-8. PubMed ID: 24369856
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tendon glycosaminoglycan proteoglycan sidechains promote collagen fibril sliding-AFM observations at the nanoscale.
    Rigozzi S; Müller R; Stemmer A; Snedeker JG
    J Biomech; 2013 Feb; 46(4):813-8. PubMed ID: 23219277
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formation of β-lactoglobulin nanofibrils by microwave heating gives a peptide composition different from conventional heating.
    Hettiarachchi CA; Melton LD; Gerrard JA; Loveday SM
    Biomacromolecules; 2012 Sep; 13(9):2868-80. PubMed ID: 22877308
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fibrous long spacing collagen ultrastructure elucidated by atomic force microscopy.
    Paige MF; Rainey JK; Goh MC
    Biophys J; 1998 Jun; 74(6):3211-6. PubMed ID: 9635774
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-assembly of peptide-amphiphile C12-Abeta(11-17) into nanofibrils.
    Deng M; Yu D; Hou Y; Wang Y
    J Phys Chem B; 2009 Jun; 113(25):8539-44. PubMed ID: 19534562
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flavonoids determine the rate of fibrillogenesis and structure of collagen type I fibrils in vitro.
    Kim YA; Tarahovsky YS; Gaidin SG; Yagolnik EA; Muzafarov EN
    Int J Biol Macromol; 2017 Nov; 104(Pt A):631-637. PubMed ID: 28629861
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural changes in human type I collagen fibrils investigated by force spectroscopy.
    Graham JS; Vomund AN; Phillips CL; Grandbois M
    Exp Cell Res; 2004 Oct; 299(2):335-42. PubMed ID: 15350533
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro synthesis of native, fibrous long spacing and segmental long spacing collagen.
    Loo RW; Goh JB; Cheng CC; Su N; Goh MC
    J Vis Exp; 2012 Sep; (67):e4417. PubMed ID: 23023198
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrostatic stabilization of β-lactoglobulin fibrils at increased pH with cationic polymers.
    Gilbert J; Campanella O; Jones OG
    Biomacromolecules; 2014 Aug; 15(8):3119-27. PubMed ID: 25019592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of hydrophilic adhesive monomers on the stability of type I collagen.
    Nezu T; Nishiyama N; Nemoto K; Terada Y
    Biomaterials; 2005 Jun; 26(18):3801-8. PubMed ID: 15626428
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amyloid fibril formation and disaggregation of fragment 1-29 of apomyoglobin: insights into the effect of pH on protein fibrillogenesis.
    Picotti P; De Franceschi G; Frare E; Spolaore B; Zambonin M; Chiti F; de Laureto PP; Fontana A
    J Mol Biol; 2007 Apr; 367(5):1237-45. PubMed ID: 17320902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.