These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 23948224)

  • 21. Facile fabrication of carbon brush with reduced graphene oxide (rGO) for decreasing resistance and accelerating pollutants removal in bio-electrochemical systems.
    Cui D; Yang LM; Liu WZ; Cui MH; Cai WW; Wang AJ
    J Hazard Mater; 2018 Jul; 354():244-249. PubMed ID: 29754042
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Decolorization of dye solution containing Acid Red 14 by electrocoagulation with a comparative investigation of different electrode connections.
    Daneshvar N; Sorkhabi HA; Kasiri MB
    J Hazard Mater; 2004 Aug; 112(1-2):55-62. PubMed ID: 15225930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electro-oxidation of two reactive azo dyes on boron-doped diamond electrode.
    Almomani F; Baranova EA
    Water Sci Technol; 2012; 66(3):465-71. PubMed ID: 22744674
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced bioelectricity generation and azo dye treatment in a reversible photo-bioelectrochemical cell by using novel anthraquinone-2,6-disulfonate (AQDS)/MnO
    Sun J; Cai B; Xu W; Huang Y; Zhang Y; Peng Y; Chang K; Kuo J; Chen K; Ning X; Liu G; Wang Y; Yang Z; Liu J
    Bioresour Technol; 2017 Feb; 225():40-47. PubMed ID: 27875767
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The biocathode of microbial electrochemical systems and microbially-influenced corrosion.
    Kim BH; Lim SS; Daud WR; Gadd GM; Chang IS
    Bioresour Technol; 2015 Aug; 190():395-401. PubMed ID: 25976915
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient azo dye decolorization in a continuous stirred tank reactor (CSTR) with built-in bioelectrochemical system.
    Cui MH; Cui D; Gao L; Cheng HY; Wang AJ
    Bioresour Technol; 2016 Oct; 218():1307-11. PubMed ID: 27497830
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemical decolorization of methyl orange powered by bioelectricity from single-chamber microbial fuel cells.
    Zhang B; Wang Z; Zhou X; Shi C; Guo H; Feng C
    Bioresour Technol; 2015 Apr; 181():360-2. PubMed ID: 25661516
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The use of artificial neural networks (ANN) for modeling of decolorization of textile dye solution containing C. I. Basic Yellow 28 by electrocoagulation process.
    Daneshvar N; Khataee AR; Djafarzadeh N
    J Hazard Mater; 2006 Oct; 137(3):1788-95. PubMed ID: 16806684
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrated air cathode microbial fuel cell-aerobic bioreactor set-up for enhanced bioelectrodegradation of azo dye Acid Blue 29.
    Khan MD; Li D; Tabraiz S; Shamurad B; Scott K; Khan MZ; Yu EH
    Sci Total Environ; 2021 Feb; 756():143752. PubMed ID: 33279191
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unveiling characteristics of a bioelectrochemical system with polarity reversion for simultaneous azo dye treatment and bioelectricity generation.
    Sun J; Zhang Y; Liu G; Ning X; Wang Y; Liu J
    Appl Microbiol Biotechnol; 2015 Sep; 99(17):7295-305. PubMed ID: 25957151
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Decolourisation of Acid orange 7 in a microbial fuel cell with a laccase-based biocathode: Influence of mitigating pH changes in the cathode chamber.
    Mani P; Keshavarz T; Chandra TS; Kyazze G
    Enzyme Microb Technol; 2017 Jan; 96():170-176. PubMed ID: 27871379
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancement of azo dye decolourization in a MFC-MEC coupled system.
    Li Y; Yang HY; Shen JY; Mu Y; Yu HQ
    Bioresour Technol; 2016 Feb; 202():93-100. PubMed ID: 26702516
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutual effect between electrochemically active bacteria (EAB) and azo dye in bio-electrochemical system (BES).
    Cui D; Cui MH; Liang B; Liu WZ; Tang ZE; Wang AJ
    Chemosphere; 2020 Jan; 239():124787. PubMed ID: 31526987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Azo dye degradation pathway and bacterial community structure in biofilm electrode reactors.
    Cao X; Wang H; Zhang S; Nishimura O; Li X
    Chemosphere; 2018 Oct; 208():219-225. PubMed ID: 29870911
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Decolorization of the azo dye reactive red X-3B by an Al-Cu bimetallic system].
    Fan JH; Ma LM; Wang HW; Wu DL
    Huan Jing Ke Xue; 2008 Jun; 29(6):1587-92. PubMed ID: 18763506
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biohydrogen facilitated denitrification at biocathode in bioelectrochemical system (BES).
    Liu H; Yan Q; Shen W
    Bioresour Technol; 2014 Nov; 171():187-92. PubMed ID: 25194913
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells.
    Xia X; Tokash JC; Zhang F; Liang P; Huang X; Logan BE
    Environ Sci Technol; 2013 Feb; 47(4):2085-91. PubMed ID: 23360098
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems.
    Zaybak Z; Pisciotta JM; Tokash JC; Logan BE
    J Biotechnol; 2013 Dec; 168(4):478-85. PubMed ID: 24126154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Linking bacterial metabolism to graphite cathodes: electrochemical insights into the H(2) -producing capability of Desulfovibrio sp.
    Aulenta F; Catapano L; Snip L; Villano M; Majone M
    ChemSusChem; 2012 Jun; 5(6):1080-5. PubMed ID: 22581429
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cathode potential and mass transfer determine performance of oxygen reducing biocathodes in microbial fuel cells.
    Ter Heijne A; Strik DP; Hamelers HV; Buisman CJ
    Environ Sci Technol; 2010 Sep; 44(18):7151-6. PubMed ID: 20715764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.