BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1169 related articles for article (PubMed ID: 23948232)

  • 1. Ionizing radiation and genetic risks. XVII. Formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double-strand breaks and deletions in irradiated germ cells.
    Sankaranarayanan K; Taleei R; Rahmanian S; Nikjoo H
    Mutat Res; 2013; 753(2):114-130. PubMed ID: 23948232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionizing radiation and genetic risks XIV. Potential research directions in the post-genome era based on knowledge of repair of radiation-induced DNA double-strand breaks in mammalian somatic cells and the origin of deletions associated with human genomic disorders.
    Sankaranarayanan K; Wassom JS
    Mutat Res; 2005 Oct; 578(1-2):333-70. PubMed ID: 16084534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of the genetic risks of exposure to ionizing radiation in humans: current status and emerging perspectives.
    Sankaranarayanan K
    J Radiat Res; 2006; 47 Suppl B():B57-66. PubMed ID: 17019053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PAXX and XLF DNA repair factors are functionally redundant in joining DNA breaks in a G1-arrested progenitor B-cell line.
    Kumar V; Alt FW; Frock RL
    Proc Natl Acad Sci U S A; 2016 Sep; 113(38):10619-24. PubMed ID: 27601633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of chromatid-break-repair detects a homologous recombination to non-homologous end-joining switch with increasing load of DNA double-strand breaks.
    Murmann-Konda T; Soni A; Stuschke M; Iliakis G
    Mutat Res Genet Toxicol Environ Mutagen; 2021 Jul; 867():503372. PubMed ID: 34266628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromosome breaks generated by low doses of ionizing radiation in G
    Soni A; Murmann-Konda T; Siemann-Loekes M; Pantelias GE; Iliakis G
    DNA Repair (Amst); 2020 May; 89():102828. PubMed ID: 32143127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The complexity of DNA double strand breaks is a critical factor enhancing end-resection.
    Yajima H; Fujisawa H; Nakajima NI; Hirakawa H; Jeggo PA; Okayasu R; Fujimori A
    DNA Repair (Amst); 2013 Nov; 12(11):936-46. PubMed ID: 24041488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of DNA double strand break repair and chromosome aberration formation.
    Iliakis G; Wang H; Perrault AR; Boecker W; Rosidi B; Windhofer F; Wu W; Guan J; Terzoudi G; Pantelias G
    Cytogenet Genome Res; 2004; 104(1-4):14-20. PubMed ID: 15162010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microhomology-mediated end joining: Good, bad and ugly.
    Seol JH; Shim EY; Lee SE
    Mutat Res; 2018 May; 809():81-87. PubMed ID: 28754468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homologous recombination protects mammalian cells from replication-associated DNA double-strand breaks arising in response to methyl methanesulfonate.
    Nikolova T; Ensminger M; Löbrich M; Kaina B
    DNA Repair (Amst); 2010 Oct; 9(10):1050-63. PubMed ID: 20708982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles for 53BP1 in the repair of radiation-induced DNA double strand breaks.
    Shibata A; Jeggo PA
    DNA Repair (Amst); 2020 Sep; 93():102915. PubMed ID: 33087281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numt-mediated double-strand break repair mitigates deletions during primate genome evolution.
    Hazkani-Covo E; Covo S
    PLoS Genet; 2008 Oct; 4(10):e1000237. PubMed ID: 18949041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical DSB-repair model for mammalian cells in G1 and early S phases of the cell cycle.
    Taleei R; Nikjoo H
    Mutat Res; 2013 Aug; 756(1-2):206-12. PubMed ID: 23792210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of repair pathway choice at two-ended DNA double-strand breaks.
    Shibata A
    Mutat Res; 2017 Oct; 803-805():51-55. PubMed ID: 28781144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of nonhomologous DNA end joining, conservative homologous recombination, and single-strand annealing in the cell cycle-dependent repair of DNA double-strand breaks induced by H(2)O(2) in mammalian cells.
    Frankenberg-Schwager M; Becker M; Garg I; Pralle E; Wolf H; Frankenberg D
    Radiat Res; 2008 Dec; 170(6):784-93. PubMed ID: 19138034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Marked contribution of alternative end-joining to chromosome-translocation-formation by stochastically induced DNA double-strand-breaks in G2-phase human cells.
    Soni A; Siemann M; Pantelias GE; Iliakis G
    Mutat Res Genet Toxicol Environ Mutagen; 2015 Nov; 793():2-8. PubMed ID: 26520366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compromised repair of radiation-induced DNA double-strand breaks in Fanconi anemia fibroblasts in G2.
    Zahnreich S; Weber B; Rösch G; Schindler D; Schmidberger H
    DNA Repair (Amst); 2020 Dec; 96():102992. PubMed ID: 33069004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence of an adaptive response targeting DNA nonhomologous end joining and its transmission to bystander cells.
    Klammer H; Kadhim M; Iliakis G
    Cancer Res; 2010 Nov; 70(21):8498-506. PubMed ID: 20861183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Determinant of DNA Repair Pathway Choices in Ionising Radiation-Induced DNA Double-Strand Breaks.
    Zhao L; Bao C; Shang Y; He X; Ma C; Lei X; Mi D; Sun Y
    Biomed Res Int; 2020; 2020():4834965. PubMed ID: 32908893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA repair kinetics in SCID mice Sertoli cells and DNA-PKcs-deficient mouse embryonic fibroblasts.
    Ahmed EA; Vélaz E; Rosemann M; Gilbertz KP; Scherthan H
    Chromosoma; 2017 Mar; 126(2):287-298. PubMed ID: 27136939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 59.