These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 23948311)

  • 1. Modeling of the thermoluminescence mechanisms in ZrO₂.
    Kadari A; Kadri D
    Appl Radiat Isot; 2013 Dec; 82():49-54. PubMed ID: 23948311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. THREE-POINT AREA METHOD FOR THERMOLUMINESCENCE GLOW CURVE ANALYSIS AND ITS APPLICATION TO THE GLOW PEAK OF K2SRP2O7:PR.
    Kundu M; Bhattacharyya S; Karmakar M; Majumdar PS
    Radiat Prot Dosimetry; 2021 May; 193(3-4):247-258. PubMed ID: 33942069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoluminescence response and glow curve structure of Sc₂TiO₅ ß-irradiated.
    Muñoz IC; Brown F; Durán-Muñoz H; Cruz-Zaragoza E; Durán-Torres B; Alvarez-Montaño VE
    Appl Radiat Isot; 2014 Aug; 90():58-61. PubMed ID: 24698777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ag nanoparticle effects on the thermoluminescent properties of monoclinic ZrO(2) exposed to ultraviolet and gamma radiation.
    Villa-Sanchéz G; Mendoza-Anaya D; Gutiérrez-Wing C; Pérez-Hernández R; González-Martínez PR; Angeles-Chavez C
    Nanotechnology; 2007 Jul; 18(26):265703. PubMed ID: 21730407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermoluminescence of zirconium oxide nanostructured to mammography X-ray beams.
    Palacios LL; Rivera T; Roman J; Azorín J; Gaona E
    Appl Radiat Isot; 2012 Jul; 70(7):1400-2. PubMed ID: 22424741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Afterglow dosimetry performance of beta particle irradiated lithium zirconate.
    Hernández-Pérez TC; Bernal R; Cruz-Vázquez C; Brown F; Mendoza-Córdova A; Salas-Juárez CJ; Avilés-Monreal R
    Appl Radiat Isot; 2018 Aug; 138():2-5. PubMed ID: 29074016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental investigation of the 100 keV X-ray dose response of the high-temperature thermoluminescence in LiF:Mg,Ti (TLD-100): theoretical interpretation using the unified interaction model.
    Livingstone J; Horowitz YS; Oster L; Datz H; Lerch M; Rosenfeld A; Horowitz A
    Radiat Prot Dosimetry; 2010 Mar; 138(4):320-33. PubMed ID: 19934115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TL dosimetric properties of Li2O-B2O3 glasses for gamma dosimetry.
    El-Adawy A; Khaled NE; El-Sersy AR; Hussein A; Donya H
    Appl Radiat Isot; 2010 Jun; 68(6):1132-6. PubMed ID: 20122841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computer program for the deconvolution of thermoluminescence glow curves.
    Chung KS; Choe HS; Lee JI; Kim JL; Chang SY
    Radiat Prot Dosimetry; 2005; 115(1-4):343-9. PubMed ID: 16381744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of absorbed dose and deep traps on thermoluminescence response: a numerical simulation.
    Mady F; Bindi R; Iacconi P; Wrobel F
    Radiat Prot Dosimetry; 2006; 119(1-4):37-40. PubMed ID: 16644969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple methods to analyse thermoluminescence glow curves assuming arbitrary recombination-retrapping rates.
    Gómez-Ros JM; Furetta C; Correcher V
    Radiat Prot Dosimetry; 2006; 119(1-4):339-43. PubMed ID: 16735569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermoluminescence properties of undoped and Dy3+ doped ZrO2 nanophosphor under beta-ray irradiation.
    Rodríguez RA; De la Rosa E; Romero VH; Meléndrez R; Salas P; Diaz-Torres LA; Barboza-Flores M
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6419-24. PubMed ID: 19205215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of computerised glow curve analysis will optimise personal thermoluminescence dosimetry measurements. Opposing the proposition.
    Pradhan AS; Yoder RC
    Radiat Prot Dosimetry; 2002; 102(3):274-7. PubMed ID: 12430967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoluminescence properties of Chile Guajillo paprika Mexicano.
    Kitis G; Cruz Zaragoza E; Furetta C
    Appl Radiat Isot; 2005 Aug; 63(2):247-54. PubMed ID: 15921917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the Need for Deconvolution Analysis of Experimental and Simulated Thermoluminescence Glow Curves.
    Kitis G; Pagonis V
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The deconvolution of thermoluminescence glow-curves using general expressions derived from the one trap-one recombination (OTOR) level model.
    Sadek AM; Eissa HM; Basha AM; Carinou E; Askounis P; Kitis G
    Appl Radiat Isot; 2015 Jan; 95():214-221. PubMed ID: 25464201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron absorbed dose measurements in LINACs by thermoluminescent dosimeters.
    Cortés JR; Romero RA; Nieto JA; Montalvo TR
    Appl Radiat Isot; 2014 Jan; 83 Pt C():210-3. PubMed ID: 24060149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoluminescence glow curves and optical stimulated luminescence of undoped alpha-Al2O3 crystals.
    Zhang CX; Tang Q; Lin LB; Luo DL
    Radiat Prot Dosimetry; 2006; 119(1-4):402-7. PubMed ID: 16644982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoluminescence glow-curve deconvolution using analytical expressions: A unified presentation.
    Peng J; Kitis G; Sadek AM; Karsu Asal EC; Li Z
    Appl Radiat Isot; 2021 Feb; 168():109440. PubMed ID: 33268224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermoluminescence glow curve deconvolution for discrete and continuous trap distributions.
    Benavente JF; Gómez-Ros JM; Romero AM
    Appl Radiat Isot; 2019 Nov; 153():108843. PubMed ID: 31404764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.