These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 23948345)

  • 1. Assessment of a sequential extraction method to evaluate mercury mobility and geochemistry in solid environmental samples.
    Fernández-Martínez R; Rucandio I
    Ecotoxicol Environ Saf; 2013 Nov; 97():196-203. PubMed ID: 23948345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Total mercury, organic mercury and mercury fractionation in soil profiles from the Almadén mercury mine area.
    Fernández-Martínez R; Rucandio I
    Environ Sci Process Impacts; 2014 Feb; 16(2):333-40. PubMed ID: 24441501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercury speciation in highly contaminated soils from chlor-alkali plants using chemical extractions.
    Neculita CM; Zagury GJ; Deschênes L
    J Environ Qual; 2005; 34(1):255-62. PubMed ID: 15647556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mercury isotope signatures of digests and sequential extracts from industrially contaminated soils and sediments.
    Grigg ARC; Kretzschmar R; Gilli RS; Wiederhold JG
    Sci Total Environ; 2018 Sep; 636():1344-1354. PubMed ID: 29913595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An automatic flow assembly for on-line dynamic fractionation of trace level concentrations of mercury in environmental solids with high organic load.
    Zhang Y; Miró M; Kolev SD
    Anal Chim Acta; 2017 Jul; 975():1-10. PubMed ID: 28552301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mercury in chemical fractions of recent pelagic sediments of the sea of Japan.
    Kot FS
    J Environ Monit; 2004 Aug; 6(8):689-95. PubMed ID: 15292952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mercury isotope signatures in contaminated sediments as a tracer for local industrial pollution sources.
    Wiederhold JG; Skyllberg U; Drott A; Jiskra M; Jonsson S; Björn E; Bourdon B; Kretzschmar R
    Environ Sci Technol; 2015 Jan; 49(1):177-85. PubMed ID: 25437501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speciation of mercury in soil and sediment by selective solvent and acid extraction.
    Han Y; Kingston HM; Boylan HM; Rahman GM; Shah S; Richter RC; Link DD; Bhandari S
    Anal Bioanal Chem; 2003 Feb; 375(3):428-36. PubMed ID: 12589509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mercury distribution, speciation and bioavailability in sediments from the Pearl River Estuary, Southern China.
    Yu X; Li H; Pan K; Yan Y; Wang WX
    Mar Pollut Bull; 2012 Aug; 64(8):1699-704. PubMed ID: 22516513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inorganic mercury binding with different sulfur species in anoxic sediments and their gut juice extractions.
    Zhong H; Wang WX
    Environ Toxicol Chem; 2009 Sep; 28(9):1851-7. PubMed ID: 19366277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical availability of mercury in stream sediments from the Almadén area, Spain.
    Martín-Doimeadios RC; Wasserman JC; Bermejo LF; Amouroux D; Nevado JJ; Donard OF
    J Environ Monit; 2000 Aug; 2(4):360-6. PubMed ID: 11249793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic and kinetic study of the single extraction of mercury from soil using sodium-thiosulfate.
    Issaro N; Besancon S; Bermond A
    Talanta; 2010 Oct; 82(5):1659-67. PubMed ID: 20875560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple and accessible analytical methods for the determination of mercury in soil and coal samples.
    Park CH; Eom Y; Lee LJ; Lee TG
    Chemosphere; 2013 Sep; 93(1):9-13. PubMed ID: 23683353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physicochemical characterization and mercury speciation of particle-size soil fractions from an abandoned mining area in Mieres, Asturias (Spain).
    Fernández-Martínez R; Loredo J; Ordóñez A; Rucandio MI
    Environ Pollut; 2006 Jul; 142(2):217-26. PubMed ID: 16360254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of drying pretreatments on the analysis of the mercury fraction in sediments.
    Liu Q; Song J; Ma T; Jiang M; Ma G; Sheng Y
    Environ Monit Assess; 2019 Sep; 191(10):607. PubMed ID: 31485756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mercury availability by operationally defined fractionation in granulometric distributions of soils and mine wastes from an abandoned cinnabar mine.
    Fernández-Martínez R; Loredo J; Ordóñez A; Rucandio I
    Environ Sci Process Impacts; 2014 May; 16(5):1069-75. PubMed ID: 24664209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of arsenic and mercury contamination in the Tisa River sediments and industrial canal sediments (Danube alluvial formation), Serbia.
    Sakan SM; Dorđević DS; Lazić MM; Tadić MM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(1):109-16. PubMed ID: 22217089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of pH, sulphate concentration and total organic carbon on mercury accumulation in sediments in the Volta Lake at Yeji, Ghana.
    Kwaansa-Ansah EE; Voegborlo RB; Adimado AA; Ephraim JH; Nriagu JO
    Bull Environ Contam Toxicol; 2012 Mar; 88(3):418-21. PubMed ID: 22258497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of an updated fractionation and indirect speciation procedure for inorganic arsenic in oxic and suboxic soils and sediments.
    Lock A; Wallschläger D; McMurdo C; Tyler L; Belzile N; Spiers G
    Environ Pollut; 2016 Dec; 219():1102-1108. PubMed ID: 27640761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An experimental approach to investigate mercury species transformations under redox oscillations in coastal sediments.
    Bouchet S; Bridou R; Tessier E; Rodriguez-Gonzalez P; Monperrus M; Abril G; Amouroux D
    Mar Environ Res; 2011 Feb; 71(1):1-9. PubMed ID: 20933266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.