These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 23948374)

  • 1. Vector field statistical analysis of kinematic and force trajectories.
    Pataky TC; Robinson MA; Vanrenterghem J
    J Biomech; 2013 Sep; 46(14):2394-401. PubMed ID: 23948374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical Parametric Mapping (SPM) for alpha-based statistical analyses of multi-muscle EMG time-series.
    Robinson MA; Vanrenterghem J; Pataky TC
    J Electromyogr Kinesiol; 2015 Feb; 25(1):14-9. PubMed ID: 25465983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vector field statistics for objective center-of-pressure trajectory analysis during gait, with evidence of scalar sensitivity to small coordinate system rotations.
    Pataky TC; Robinson MA; Vanrenterghem J; Savage R; Bates KT; Crompton RH
    Gait Posture; 2014; 40(1):255-8. PubMed ID: 24726191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized n-dimensional biomechanical field analysis using statistical parametric mapping.
    Pataky TC
    J Biomech; 2010 Jul; 43(10):1976-82. PubMed ID: 20434726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zero- vs. one-dimensional, parametric vs. non-parametric, and confidence interval vs. hypothesis testing procedures in one-dimensional biomechanical trajectory analysis.
    Pataky TC; Vanrenterghem J; Robinson MA
    J Biomech; 2015 May; 48(7):1277-85. PubMed ID: 25817475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vector-field statistics for the analysis of time varying clinical gait data.
    Donnelly CJ; Alexander C; Pataky TC; Stannage K; Reid S; Robinson MA
    Clin Biomech (Bristol, Avon); 2017 Jan; 41():87-91. PubMed ID: 28024228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-way ANOVA for scalar trajectories, with experimental evidence of non-phasic interactions.
    Pataky TC; Vanrenterghem J; Robinson MA
    J Biomech; 2015 Jan; 48(1):186-9. PubMed ID: 25458576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-dimensional statistical parametric mapping in Python.
    Pataky TC
    Comput Methods Biomech Biomed Engin; 2012; 15(3):295-301. PubMed ID: 21756121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The probability of false positives in zero-dimensional analyses of one-dimensional kinematic, force and EMG trajectories.
    Pataky TC; Vanrenterghem J; Robinson MA
    J Biomech; 2016 Jun; 49(9):1468-1476. PubMed ID: 27067363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining gait patterns using Parallel Factor 2 (PARAFAC2): A new analysis of previously published data.
    Liew BXW; Morris S; Netto K
    J Biomech; 2019 Jun; 90():133-137. PubMed ID: 31076170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle mechanical advantage of human walking and running: implications for energy cost.
    Biewener AA; Farley CT; Roberts TJ; Temaner M
    J Appl Physiol (1985); 2004 Dec; 97(6):2266-74. PubMed ID: 15258124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of muscle damage following eccentric exercise on gait biomechanics.
    Paschalis V; Giakas G; Baltzopoulos V; Jamurtas AZ; Theoharis V; Kotzamanidis C; Koutedakis Y
    Gait Posture; 2007 Feb; 25(2):236-42. PubMed ID: 16714113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aging and running experience affects the gearing in the musculoskeletal system of the lower extremities while walking.
    Karamanidis K; Arampatzis A
    Gait Posture; 2007 Apr; 25(4):590-6. PubMed ID: 16934980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational framework for estimating statistical power and planning hypothesis-driven experiments involving one-dimensional biomechanical continua.
    Pataky TC; Robinson MA; Vanrenterghem J
    J Biomech; 2018 Jan; 66():159-164. PubMed ID: 29146283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why don't most runners get knee osteoarthritis? A case for per-unit-distance loads.
    Miller RH; Edwards WB; Brandon SC; Morton AM; Deluzio KJ
    Med Sci Sports Exerc; 2014 Mar; 46(3):572-9. PubMed ID: 24042311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ground reaction force and 3D biomechanical characteristics of walking in short-leg walkers.
    Zhang S; Clowers KG; Powell D
    Gait Posture; 2006 Dec; 24(4):487-92. PubMed ID: 16414263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of an obesity-specific marker set on estimated muscle and joint forces in walking.
    Lerner ZF; Board WJ; Browning RC
    Med Sci Sports Exerc; 2014 Jun; 46(6):1261-7. PubMed ID: 24518193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of the six major gait determinants on the vertical center of mass trajectory and the vertical ground reaction force.
    Hayot C; Sakka S; Lacouture P
    Hum Mov Sci; 2013 Apr; 32(2):279-89. PubMed ID: 23725827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model-experiment comparison of system dynamics for human walking and running.
    Lipfert SW; Günther M; Renjewski D; Grimmer S; Seyfarth A
    J Theor Biol; 2012 Jan; 292():11-7. PubMed ID: 21959315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.