BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1434 related articles for article (PubMed ID: 23948422)

  • 1. Skeletal muscle atrophy during short-term disuse: implications for age-related sarcopenia.
    Wall BT; Dirks ML; van Loon LJ
    Ageing Res Rev; 2013 Sep; 12(4):898-906. PubMed ID: 23948422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nutritional strategies to attenuate muscle disuse atrophy.
    Wall BT; van Loon LJ
    Nutr Rev; 2013 Apr; 71(4):195-208. PubMed ID: 23550781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skeletal muscle immobilisation-induced atrophy: mechanistic insights from human studies.
    Deane CS; Piasecki M; Atherton PJ
    Clin Sci (Lond); 2024 Jun; 138(12):741-756. PubMed ID: 38895777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial death effectors: relevance to sarcopenia and disuse muscle atrophy.
    Marzetti E; Hwang JC; Lees HA; Wohlgemuth SE; Dupont-Versteegden EE; Carter CS; Bernabei R; Leeuwenburgh C
    Biochim Biophys Acta; 2010 Mar; 1800(3):235-44. PubMed ID: 19450666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of skeletal muscle atrophy in response to disuse: clinical/preclinical contentions and fallacies of evidence.
    Atherton PJ; Greenhaff PL; Phillips SM; Bodine SC; Adams CM; Lang CH
    Am J Physiol Endocrinol Metab; 2016 Sep; 311(3):E594-604. PubMed ID: 27382036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle disuse atrophy is not accompanied by changes in skeletal muscle satellite cell content.
    Snijders T; Wall BT; Dirks ML; Senden JM; Hartgens F; Dolmans J; Losen M; Verdijk LB; van Loon LJ
    Clin Sci (Lond); 2014 Apr; 126(8):557-66. PubMed ID: 24215591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substantial skeletal muscle loss occurs during only 5 days of disuse.
    Wall BT; Dirks ML; Snijders T; Senden JM; Dolmans J; van Loon LJ
    Acta Physiol (Oxf); 2014 Mar; 210(3):600-11. PubMed ID: 24168489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-term muscle disuse atrophy is not associated with increased intramuscular lipid deposition or a decline in the maximal activity of key mitochondrial enzymes in young and older males.
    Wall BT; Dirks ML; Snijders T; Stephens FB; Senden JM; Verscheijden ML; van Loon LJ
    Exp Gerontol; 2015 Jan; 61():76-83. PubMed ID: 25457674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutritional strategies to counteract muscle atrophy caused by disuse and to improve recovery.
    Magne H; Savary-Auzeloux I; Rémond D; Dardevet D
    Nutr Res Rev; 2013 Dec; 26(2):149-65. PubMed ID: 23930668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasticity and function of human skeletal muscle in relation to disuse and rehabilitation: Influence of ageing and surgery.
    Suetta C
    Dan Med J; 2017 Aug; 64(8):. PubMed ID: 28869034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disuse-induced skeletal muscle atrophy in disease and nondisease states in humans: mechanisms, prevention, and recovery strategies.
    Nunes EA; Stokes T; McKendry J; Currier BS; Phillips SM
    Am J Physiol Cell Physiol; 2022 Jun; 322(6):C1068-C1084. PubMed ID: 35476500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. β-Hydroxy-β-methylbutyrate (HMB) enhances the proliferation of satellite cells in fast muscles of aged rats during recovery from disuse atrophy.
    Alway SE; Pereira SL; Edens NK; Hao Y; Bennett BT
    Exp Gerontol; 2013 Sep; 48(9):973-84. PubMed ID: 23832076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletal muscle atrophy: disease-induced mechanisms may mask disuse atrophy.
    Malavaki CJ; Sakkas GK; Mitrou GI; Kalyva A; Stefanidis I; Myburgh KH; Karatzaferi C
    J Muscle Res Cell Motil; 2015 Dec; 36(6):405-21. PubMed ID: 26728748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative stress and disuse muscle atrophy: cause or consequence?
    Powers SK; Smuder AJ; Judge AR
    Curr Opin Clin Nutr Metab Care; 2012 May; 15(3):240-5. PubMed ID: 22466926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aging affects the transcriptional regulation of human skeletal muscle disuse atrophy.
    Suetta C; Frandsen U; Jensen L; Jensen MM; Jespersen JG; Hvid LG; Bayer M; Petersson SJ; Schrøder HD; Andersen JL; Heinemeier KM; Aagaard P; Schjerling P; Kjaer M
    PLoS One; 2012; 7(12):e51238. PubMed ID: 23284670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying the potential therapeutic effects of miR‑6516 on muscle disuse atrophy.
    Jung W; Juang U; Gwon S; Nguyen H; Huang Q; Lee S; Lee B; Kim SH; Ryu S; Park J; Park J
    Mol Med Rep; 2024 Jul; 30(1):. PubMed ID: 38757344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo alterations in skeletal muscle form and function after disuse atrophy.
    Clark BC
    Med Sci Sports Exerc; 2009 Oct; 41(10):1869-75. PubMed ID: 19727027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nutritional Strategies to Offset Disuse-Induced Skeletal Muscle Atrophy and Anabolic Resistance in Older Adults: From Whole-Foods to Isolated Ingredients.
    Marshall RN; Smeuninx B; Morgan PT; Breen L
    Nutrients; 2020 May; 12(5):. PubMed ID: 32466126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analysis of skeletal muscle tissue using SELDI-TOF MS: application to disuse atrophy.
    Clarke MS
    Methods Mol Biol; 2012; 818():131-41. PubMed ID: 22083821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial signaling contributes to disuse muscle atrophy.
    Powers SK; Wiggs MP; Duarte JA; Zergeroglu AM; Demirel HA
    Am J Physiol Endocrinol Metab; 2012 Jul; 303(1):E31-9. PubMed ID: 22395111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 72.