These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23948608)

  • 1. Ecological bioavailability of permethrin and p,p'-DDT: toxicity depends on type of organic matter resource.
    de Perre C; Trimble AJ; Maul JD; Lydy MJ
    Chemosphere; 2014 Feb; 96():67-73. PubMed ID: 23948608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partitioning and matrix-specific toxicity of bifenthrin among sediments and leaf-sourced organic matter.
    Maul JD; Trimble AJ; Lydy MJ
    Environ Toxicol Chem; 2008 Apr; 27(4):945-52. PubMed ID: 18333691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing bioavailability and toxicity of permethrin and DDT in sediment using matrix solid phase microextraction.
    Ding Y; Landrum PF; You J; Lydy MJ
    Ecotoxicology; 2013 Jan; 22(1):109-17. PubMed ID: 23086182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Survey of bioaccessible pyrethroid insecticides and sediment toxicity in urban streams of the northeast United States.
    Huff Hartz KE; Nutile SA; Fung CY; Sinche FL; Moran PW; Van Metre PC; Nowell LH; Lydy MJ
    Environ Pollut; 2019 Nov; 254(Pt A):112931. PubMed ID: 31377335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use and toxicity of pyrethroid pesticides in the Central Valley, California, USA.
    Amweg EL; Weston DP; Ureda NM
    Environ Toxicol Chem; 2005 Apr; 24(4):966-72. PubMed ID: 15839572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of solid phase microextraction to estimate toxicity: relating fiber concentrations to toxicity--part I.
    Ding Y; Landrum PF; You J; Harwood AD; Lydy MJ
    Environ Toxicol Chem; 2012 Sep; 31(9):2159-67. PubMed ID: 22767390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution and toxicity of sediment-associated pesticides in agriculture-dominated water bodies of California's Central Valley.
    Weston DP; You J; Lydy MJ
    Environ Sci Technol; 2004 May; 38(10):2752-9. PubMed ID: 15212247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of piperonyl butoxide on permethrin toxicity in the amphipod Hyalella azteca.
    Amweg EL; Weston DP; Johnson CS; You J; Lydy MJ
    Environ Toxicol Chem; 2006 Jul; 25(7):1817-25. PubMed ID: 16833143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occurrence, compositional distribution, and toxicity assessment of pyrethroid insecticides in sediments from the fluvial systems of Chaohu Lake, Eastern China.
    Wang JZ; Bai YS; Wu Y; Zhang S; Chen TH; Peng SC; Xie YW; Zhang XW
    Environ Sci Pollut Res Int; 2016 Jun; 23(11):10406-10414. PubMed ID: 26606936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do pyrethroid-resistant Hyalella azteca have greater bioaccumulation potential compared to non-resistant populations? Implications for bioaccumulation in fish.
    Muggelberg LL; Huff Hartz KE; Nutile SA; Harwood AD; Heim JR; Derby AP; Weston DP; Lydy MJ
    Environ Pollut; 2017 Jan; 220(Pt A):375-382. PubMed ID: 27756597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusion of the synthetic pyrethroid permethrin into bed-sediments.
    Allan IJ; House WA; Parker A; Carter JE
    Environ Sci Technol; 2005 Jan; 39(2):523-30. PubMed ID: 15707052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of dissolved organic matter on nickel bioavailability and toxicity to Hyalella azteca in water-only exposures.
    Doig LE; Liber K
    Aquat Toxicol; 2006 Mar; 76(3-4):203-16. PubMed ID: 16297459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Avoidance behavior of Hyalella azteca in response to three common-use insecticides.
    Johns M; Deloe K; Beaty LE; Simpson AM; Nutile SA
    Chemosphere; 2023 Dec; 345():140492. PubMed ID: 37865201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity of a dissolved pyrethroid mixture to Hyalella azteca at environmentally relevant concentrations.
    Brander SM; Werner I; White JW; Deanovic LA
    Environ Toxicol Chem; 2009 Jul; 28(7):1493-9. PubMed ID: 19249876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. No acute toxicity to Uca pugnax, the mud fiddler crab, following a 96-h exposure to sediment-bound permethrin.
    Stueckle TA; Griffin K; Foran CM
    Environ Toxicol; 2008 Aug; 23(4):530-8. PubMed ID: 18214939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical availability and sediment toxicity of pyrethroid insecticides to Hyalella azteca: application to field sediment with unexpectedly low toxicity.
    You J; Pehkonen S; Weston DP; Lydy MJ
    Environ Toxicol Chem; 2008 Oct; 27(10):2124-30. PubMed ID: 18419174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of solid phase microextraction to estimate toxicity: relating fiber concentrations to body residues--part II.
    Ding Y; Landrum PF; You J; Harwood AD; Lydy MJ
    Environ Toxicol Chem; 2012 Sep; 31(9):2168-74. PubMed ID: 22786796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining modifications to bifenthrin toxicity and sediment binding affinity from varying potassium chloride concentrations in overlying water.
    Trimble AJ; Belden JB; Mueting SA; Lydy MJ
    Chemosphere; 2010 Jun; 80(1):53-9. PubMed ID: 20403629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental fate of pyrethroids in urban and suburban stream sediments and the appropriateness of Hyalella azteca model in determining ecological risk.
    Palmquist K; Fairbrother A; Salatas J; Guiney PD
    Integr Environ Assess Manag; 2011 Jul; 7(3):325-35. PubMed ID: 21120905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses of Hyalella azteca and phytoplankton to a simulated agricultural runoff event in a managed backwater wetland.
    Lizotte RE; Shields FD; Murdock JN; Knight SS
    Chemosphere; 2012 May; 87(7):684-91. PubMed ID: 22245061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.