These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 23948951)

  • 1. Developing catalytic applications of cooperative bimetallics: competitive hydroamination/trimerization reactions of isocyanates catalysed by sodium magnesiates.
    Hernán-Gómez A; Bradley TD; Kennedy AR; Livingstone Z; Robertson SD; Hevia E
    Chem Commun (Camb); 2013 Oct; 49(77):8659-61. PubMed ID: 23948951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alkali metal and stoichiometric effects in intermolecular hydroamination catalysed by lithium, sodium and potassium magnesiates.
    Davin L; Hernán-Gómez A; McLaughlin C; Kennedy AR; McLellan R; Hevia E
    Dalton Trans; 2019 Jun; 48(23):8122-8130. PubMed ID: 31045196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavier group 2 element-catalysed hydroamination of isocyanates.
    Barrett AG; Boorman TC; Crimmin MR; Hill MS; Kociok-Köhn G; Procopiou PA
    Chem Commun (Camb); 2008 Nov; (41):5206-8. PubMed ID: 18956070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the reactivity of sodium alkyl-magnesiates towards quinoxaline: single electron transfer (SET) vs. nucleophilic alkylation processes.
    Livingstone Z; Hernán-Gómez A; Baillie SE; Armstrong DR; Carrella LM; Clegg W; Harrington RW; Kennedy AR; Rentschler E; Hevia E
    Dalton Trans; 2016 Apr; 45(14):6175-82. PubMed ID: 26617325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intramolecular hydroamination of aminoalkenes by calcium and magnesium complexes: a synthetic and mechanistic study.
    Crimmin MR; Arrowsmith M; Barrett AG; Casely IJ; Hill MS; Procopiou PA
    J Am Chem Soc; 2009 Jul; 131(28):9670-85. PubMed ID: 19552442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cationic rare-earth metal trimethylsilylmethyl complexes supported by THF and 12-crown-4 ligands: synthesis and structural characterization.
    Elvidge BR; Arndt S; Zeimentz PM; Spaniol TP; Okuda J
    Inorg Chem; 2005 Sep; 44(19):6777-88. PubMed ID: 16156637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand exchange reactions and hydroamination with tris(oxazolinyl)borato yttrium compounds.
    Pawlikowski AV; Ellern A; Sadow AD
    Inorg Chem; 2009 Aug; 48(16):8020-9. PubMed ID: 19586044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis, structure and hydrosilylation activity of neutral and cationic rare-earth metal silanolate complexes.
    Elvidge BR; Arndt S; Spaniol TP; Okuda J
    Dalton Trans; 2006 Feb; (7):890-901. PubMed ID: 16462949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Syntheses and structures of alkaline earth metal bis(diphenylamides).
    Gärtner M; Fischer R; Langer J; Görls H; Walther D; Westerhausen M
    Inorg Chem; 2007 Jun; 46(12):5118-24. PubMed ID: 17474740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organolathanide-catalyzed regioselective intermolecular hydroamination of alkenes, alkynes, vinylarenes, di- and trivinylarenes, and methylenecyclopropanes. Scope and mechanistic comparison to intramolecular cyclohydroaminations.
    Ryu JS; Li GY; Marks TJ
    J Am Chem Soc; 2003 Oct; 125(41):12584-605. PubMed ID: 14531704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavier alkaline earth catalysts for the intermolecular hydroamination of vinylarenes, dienes, and alkynes.
    Brinkmann C; Barrett AG; Hill MS; Procopiou PA
    J Am Chem Soc; 2012 Feb; 134(4):2193-207. PubMed ID: 22239542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic investigation of intramolecular aminoalkene and aminoalkyne hydroamination/cyclization catalyzed by highly electrophilic, tetravalent constrained geometry 4d and 5f complexes. Evidence for an M-N sigma-bonded insertive pathway.
    Stubbert BD; Marks TJ
    J Am Chem Soc; 2007 May; 129(19):6149-67. PubMed ID: 17441716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Acetate Anions in the Catalytic Formation of Isocyanurates from Aromatic Isocyanates.
    Guo Y; Muuronen M; Deglmann P; Lucas F; Sijbesma RP; Tomović Ž
    J Org Chem; 2021 Apr; 86(8):5651-5659. PubMed ID: 33793239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclohydroamination of aminoalkenes catalyzed by disilazide alkaline-earth metal complexes: reactivity patterns and deactivation pathways.
    Liu B; Roisnel T; Carpentier JF; Sarazin Y
    Chemistry; 2013 Feb; 19(8):2784-802. PubMed ID: 23307610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radical-transfer hydroamination of olefins with N-aminated dihydropyridines.
    Chou CM; Guin J; Mück-Lichtenfeld C; Grimme S; Studer A
    Chem Asian J; 2011 May; 6(5):1197-209. PubMed ID: 21384557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homogeneous catalytic dehydrocoupling/dehydrogenation of amine-borane adducts by early transition metal, group 4 metallocene complexes.
    Sloan ME; Staubitz A; Clark TJ; Russell CA; Lloyd-Jones GC; Manners I
    J Am Chem Soc; 2010 Mar; 132(11):3831-41. PubMed ID: 20180565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New and versatile routes to zirconium imido dichloride compounds.
    Dubberley SR; Evans S; Boyd CL; Mountford P
    Dalton Trans; 2005 Apr; (8):1448-58. PubMed ID: 15824783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New chiral lanthanide amide ate complexes for the catalysed synthesis of scalemic nitrogen-containing heterocycles.
    Aillaud I; Collin J; Duhayon C; Guillot R; Lyubov D; Schulz E; Trifonov A
    Chemistry; 2008; 14(7):2189-200. PubMed ID: 18081126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rare-earth metal alkyl, amido, and cyclopentadienyl complexes supported by imidazolin-2-iminato ligands: synthesis, structural characterization, and catalytic application.
    Trambitas AG; Panda TK; Jenter J; Roesky PW; Daniliuc C; Hrib CG; Jones PG; Tamm M
    Inorg Chem; 2010 Mar; 49(5):2435-46. PubMed ID: 20102173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper(I)-dioxygen reactivity of [(L)Cu(I)](+) (L = tris(2-pyridylmethyl)amine): kinetic/thermodynamic and spectroscopic studies concerning the formation of Cu-O2 and Cu2-O2 adducts as a function of solvent medium and 4-pyridyl ligand substituent variations.
    Zhang CX; Kaderli S; Costas M; Kim EI; Neuhold YM; Karlin KD; Zuberbühler AD
    Inorg Chem; 2003 Mar; 42(6):1807-24. PubMed ID: 12639113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.