These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 23949034)

  • 1. Improved motor performance in chronic spinal cord injury following upper-limb robotic training.
    Cortes M; Elder J; Rykman A; Murray L; Avedissian M; Stampas A; Thickbroom GW; Pascual-Leone A; Krebs HI; Valls-Sole J; Edwards DJ
    NeuroRehabilitation; 2013; 33(1):57-65. PubMed ID: 23949034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved grasp function with transcranial direct current stimulation in chronic spinal cord injury.
    Cortes M; Medeiros AH; Gandhi A; Lee P; Krebs HI; Thickbroom G; Edwards D
    NeuroRehabilitation; 2017; 41(1):51-59. PubMed ID: 28505987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Upper Limb Motor Recovery on Functional Independence After Traumatic Low Cervical Spinal Cord Injury.
    Javeed S; Zhang JK; Greenberg JK; Botterbush K; Benedict B; Plog B; Gupta VP; Dibble CF; Khalifeh JM; Wen H; Chen Y; Park Y; Belzberg A; Tuffaha S; Burks SS; Levi AD; Zager EL; Faraji AH; Mahan MA; Midha R; Wilson TJ; Juknis N; Ray WZ
    J Neurotrauma; 2024 May; 41(9-10):1211-1222. PubMed ID: 38062795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcranial direct current stimulation (tDCS) of the primary motor cortex and robot-assisted arm training in chronic incomplete cervical spinal cord injury: A proof of concept sham-randomized clinical study.
    Yozbatiran N; Keser Z; Davis M; Stampas A; O'Malley MK; Cooper-Hay C; Frontera J; Fregni F; Francisco GE
    NeuroRehabilitation; 2016 Jul; 39(3):401-11. PubMed ID: 27589510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robotic training and kinematic analysis of arm and hand after incomplete spinal cord injury: a case study.
    Kadivar Z; Sullivan JL; Eng DP; Pehlivan AU; O'Malley MK; Yozbatiran N; Francisco GE
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975429. PubMed ID: 22275630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robot-assisted Therapy for the Upper Limb after Cervical Spinal Cord Injury.
    Yozbatiran N; Francisco GE
    Phys Med Rehabil Clin N Am; 2019 May; 30(2):367-384. PubMed ID: 30954153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robot-assisted upper extremity rehabilitation for cervical spinal cord injuries: a systematic scoping review.
    Singh H; Unger J; Zariffa J; Pakosh M; Jaglal S; Craven BC; Musselman KE
    Disabil Rehabil Assist Technol; 2018 Oct; 13(7):704-715. PubMed ID: 29334467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robotic training and clinical assessment of upper extremity movements after spinal cord injury: a single case report.
    Yozbatiran N; Berliner J; O'Malley MK; Pehlivan AU; Kadivar Z; Boake C; Francisco GE
    J Rehabil Med; 2012 Feb; 44(2):186-8. PubMed ID: 22334347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Transcranial Direct Current Stimulation (tDCS) Combined With Wrist Robot-Assisted Rehabilitation on Motor Recovery in Subacute Stroke Patients: A Randomized Controlled Trial.
    Mazzoleni S; Tran VD; Dario P; Posteraro F
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1458-1466. PubMed ID: 31170077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corticospinal excitability as a predictor of functional gains at the affected upper limb following robotic training in chronic stroke survivors.
    Milot MH; Spencer SJ; Chan V; Allington JP; Klein J; Chou C; Pearson-Fuhrhop K; Bobrow JE; Reinkensmeyer DJ; Cramer SC
    Neurorehabil Neural Repair; 2014; 28(9):819-27. PubMed ID: 24642382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A single-subject study of robotic upper limb training in the subacute phase for four persons with cervical spinal cord injury.
    Sørensen L; Månum G
    Spinal Cord Ser Cases; 2019; 5():29. PubMed ID: 31240123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation of bilateral M1 hand area excitability and overall functional recovery after spinal cord injury: protocol for a prospective cohort study.
    Dai C; Lin X; Xue B; Xi X; Gao M; Liu X; Han T; Li Q; Yuan H; Sun X
    BMC Neurol; 2024 Jun; 24(1):213. PubMed ID: 38909175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of robot-assisted rehabilitation for the functional recovery of the upper limb in post-stroke patients: a randomized controlled study.
    Taveggia G; Borboni A; Salvi L; Mulé C; Fogliaresi S; Villafañe JH; Casale R
    Eur J Phys Rehabil Med; 2016 Dec; 52(6):767-773. PubMed ID: 27406879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How could robotic training and botolinum toxin be combined in chronic post stroke upper limb spasticity? A pilot study.
    Pennati GV; Da Re C; Messineo I; Bonaiuti D
    Eur J Phys Rehabil Med; 2015 Aug; 51(4):381-7. PubMed ID: 25358636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decrease of spasticity after hybrid assistive limb
    Ikumi A; Kubota S; Shimizu Y; Kadone H; Marushima A; Ueno T; Kawamoto H; Hada Y; Matsumura A; Sankai Y; Yamazaki M
    J Spinal Cord Med; 2017 Sep; 40(5):573-578. PubMed ID: 27762171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robot-Assisted Training of Arm and Hand Movement Shows Functional Improvements for Incomplete Cervical Spinal Cord Injury.
    Francisco GE; Yozbatiran N; Berliner J; OʼMalley MK; Pehlivan AU; Kadivar Z; Fitle K; Boake C
    Am J Phys Med Rehabil; 2017 Oct; 96(10 Suppl 1):S171-S177. PubMed ID: 28857769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robotic-assisted rehabilitation of the upper limb after acute stroke.
    Masiero S; Celia A; Rosati G; Armani M
    Arch Phys Med Rehabil; 2007 Feb; 88(2):142-9. PubMed ID: 17270510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermittent theta-burst stimulation for upper-limb dysfunction and spasticity in spinal cord injury: a single-blind randomized feasibility study.
    Gharooni AA; Nair KPS; Hawkins D; Scivill I; Hind D; Hariharan R
    Spinal Cord; 2018 Aug; 56(8):762-768. PubMed ID: 29895874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adjusting Assistance Commensurates with Patient Effort During Robot-Assisted Upper Limb Training for a Patient with Spasticity After Cervical Spinal Cord Injury: A Case Report.
    Yoshikawa K; Koseki K; Endo Y; Yamamoto S; Kanae K; Takeuchi R; Yozu A; Mutsuzaki H
    Medicina (Kaunas); 2019 Jul; 55(8):. PubMed ID: 31344963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level.
    Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M
    Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.