These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 23949037)

  • 1. Evidence of end-effector based gait machines in gait rehabilitation after CNS lesion.
    Hesse S; Schattat N; Mehrholz J; Werner C
    NeuroRehabilitation; 2013; 33(1):77-84. PubMed ID: 23949037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gait rehabilitation machines based on programmable footplates.
    Schmidt H; Werner C; Bernhardt R; Hesse S; Krüger J
    J Neuroeng Rehabil; 2007 Feb; 4():2. PubMed ID: 17291335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Connecting research to the needs of patients and clinicians.
    Hesse S; Werner C
    Brain Res Bull; 2009 Jan; 78(1):26-34. PubMed ID: 18601984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What does best evidence tell us about robotic gait rehabilitation in stroke patients: A systematic review and meta-analysis.
    Bruni MF; Melegari C; De Cola MC; Bramanti A; Bramanti P; Calabrò RS
    J Clin Neurosci; 2018 Feb; 48():11-17. PubMed ID: 29208476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pilot study of randomized clinical controlled trial of gait training in subacute stroke patients with partial body-weight support electromechanical gait trainer and functional electrical stimulation: six-month follow-up.
    Ng MF; Tong RK; Li LS
    Stroke; 2008 Jan; 39(1):154-60. PubMed ID: 18006861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gait training with the newly developed 'LokoHelp'-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study.
    Freivogel S; Mehrholz J; Husak-Sotomayor T; Schmalohr D
    Brain Inj; 2008 Jul; 22(7-8):625-32. PubMed ID: 18568717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of the robot assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury.
    Sale P; Franceschini M; Waldner A; Hesse S
    Eur J Phys Rehabil Med; 2012 Mar; 48(1):111-21. PubMed ID: 22543557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Locomotor therapy in neurorehabilitation.
    Hesse S
    NeuroRehabilitation; 2001; 16(3):133-9. PubMed ID: 11790898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved gait after repetitive locomotor training in children with cerebral palsy.
    Smania N; Bonetti P; Gandolfi M; Cosentino A; Waldner A; Hesse S; Werner C; Bisoffi G; Geroin C; Munari D
    Am J Phys Med Rehabil; 2011 Feb; 90(2):137-49. PubMed ID: 21217461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Benefits of robotics in gait rehabilitation in cerebral palsy: A systematic review].
    Lobato Garcia L; González González Y; Da Cuña Carrera I; Alonso Calvete A
    Rehabilitacion (Madr); 2020; 54(2):128-136. PubMed ID: 32370827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved walking ability and reduced therapeutic stress with an electromechanical gait device.
    Freivogel S; Schmalohr D; Mehrholz J
    J Rehabil Med; 2009 Sep; 41(9):734-9. PubMed ID: 19774307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study.
    Hornby TG; Campbell DD; Kahn JH; Demott T; Moore JL; Roth HR
    Stroke; 2008 Jun; 39(6):1786-92. PubMed ID: 18467648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does gait analysis change clinical decision-making in poststroke patients? Results from a pragmatic prospective observational study.
    Ferrarin M; Rabuffetti M; Bacchini M; Casiraghi A; Castagna A; Pizzi A; Montesano A
    Eur J Phys Rehabil Med; 2015 Apr; 51(2):171-84. PubMed ID: 25184798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upper and lower extremity robotic devices for rehabilitation and for studying motor control.
    Hesse S; Schmidt H; Werner C; Bardeleben A
    Curr Opin Neurol; 2003 Dec; 16(6):705-10. PubMed ID: 14624080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of treadmill training with partial body weight support and the proprioceptive neuromuscular facilitation method on hemiparetic gait: a randomized controlled study.
    Ribeiro T; Britto H; Oliveira D; Silva E; Galvão E; Lindquist A
    Eur J Phys Rehabil Med; 2013 Aug; 49(4):451-61. PubMed ID: 23172402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of gait and other motor functions after stroke: novel physical and pharmacological treatment strategies.
    Hesse S
    Restor Neurol Neurosci; 2004; 22(3-5):359-69. PubMed ID: 15502276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effectiveness of locomotor therapy using robotic-assisted gait training in subacute stroke patients: a randomized controlled trial.
    Schwartz I; Sajin A; Fisher I; Neeb M; Shochina M; Katz-Leurer M; Meiner Z
    PM R; 2009 Jun; 1(6):516-23. PubMed ID: 19627940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control strategies for effective robot assisted gait rehabilitation: the state of art and future prospects.
    Cao J; Xie SQ; Das R; Zhu GL
    Med Eng Phys; 2014 Dec; 36(12):1555-66. PubMed ID: 25205588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of intensive therapy using gait trainer or floor walking exercises early after stroke.
    Peurala SH; Airaksinen O; Huuskonen P; Jäkälä P; Juhakoski M; Sandell K; Tarkka IM; Sivenius J
    J Rehabil Med; 2009 Feb; 41(3):166-73. PubMed ID: 19229450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An accelerometry-based comparison of 2 robotic assistive devices for treadmill training of gait.
    Regnaux JP; Saremi K; Marehbian J; Bussel B; Dobkin BH
    Neurorehabil Neural Repair; 2008; 22(4):348-54. PubMed ID: 18073325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.