BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 23949043)

  • 21. Robotic technologies and rehabilitation: new tools for stroke patients' therapy.
    Poli P; Morone G; Rosati G; Masiero S
    Biomed Res Int; 2013; 2013():153872. PubMed ID: 24350244
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acceptability of robotic technology in neuro-rehabilitation: preliminary results on chronic stroke patients.
    Mazzoleni S; Turchetti G; Palla I; Posteraro F; Dario P
    Comput Methods Programs Biomed; 2014 Sep; 116(2):116-22. PubMed ID: 24461799
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Poststroke upper extremity rehabilitation: a review of robotic systems and clinical results.
    Brewer BR; McDowell SK; Worthen-Chaudhari LC
    Top Stroke Rehabil; 2007; 14(6):22-44. PubMed ID: 18174114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy.
    Sugar TG; He J; Koeneman EJ; Koeneman JB; Herman R; Huang H; Schultz RS; Herring DE; Wanberg J; Balasubramanian S; Swenson P; Ward JA
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):336-46. PubMed ID: 17894266
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robotic technology and physical medicine and rehabilitation.
    Krebs HI
    Eur J Phys Rehabil Med; 2012 Jun; 48(2):319-24. PubMed ID: 22614892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A decision-theoretic approach in the design of an adaptive upper-limb stroke rehabilitation robot.
    Huq R; Kan P; Goetschalckx R; Hébert D; Hoey J; Mihailidis A
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975418. PubMed ID: 22275621
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effector force requirements to enable robotic systems to provide assisted exercise in people with upper limb impairment after stroke.
    Jackson AE; Culmer PR; Levesley MC; Cozens JA; Makower SG; Bhakta BB
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975391. PubMed ID: 22275595
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Upper limb robotics applied to neurorehabilitation: An overview of clinical practice.
    Duret C; Mazzoleni S
    NeuroRehabilitation; 2017; 41(1):5-15. PubMed ID: 28505985
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robotic assistive and rehabilitation devices leading to motor recovery in upper limb: a systematic review.
    Khalid S; Alnajjar F; Gochoo M; Renawi A; Shimoda S
    Disabil Rehabil Assist Technol; 2023 Jul; 18(5):658-672. PubMed ID: 33861684
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robotic therapy: a novel approach in upper-limb neurorehabilitation after stroke.
    Masiero S; Carraro E; Celia A; Rosati G; Armani M
    Neurol Sci; 2007 Oct; 28(5):294. PubMed ID: 17972048
    [No Abstract]   [Full Text] [Related]  

  • 31. A robotic device as a sensitive quantitative tool to assess upper limb impairments in stroke patients: a preliminary prospective cohort study.
    Gilliaux M; Lejeune T; Detrembleur C; Sapin J; Dehez B; Stoquart G
    J Rehabil Med; 2012 Mar; 44(3):210-7. PubMed ID: 22367455
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Robotic assessment of upper limb motor function after stroke.
    Balasubramanian S; Colombo R; Sterpi I; Sanguineti V; Burdet E
    Am J Phys Med Rehabil; 2012 Nov; 91(11 Suppl 3):S255-69. PubMed ID: 23080041
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Robotic techniques for upper limb evaluation and rehabilitation of stroke patients.
    Colombo R; Pisano F; Micera S; Mazzone A; Delconte C; Carrozza MC; Dario P; Minuco G
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):311-24. PubMed ID: 16200755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. EMU: A transparent 3D robotic manipulandum for upper-limb rehabilitation.
    Fong J; Crocher V; Tan Y; Oetomo D; Mareels I
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():771-776. PubMed ID: 28813913
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An overview of robotic/mechanical devices for post-stroke thumb rehabilitation.
    Suarez-Escobar M; Rendon-Velez E
    Disabil Rehabil Assist Technol; 2018 Oct; 13(7):683-703. PubMed ID: 29334274
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Robotic training and kinematic analysis of arm and hand after incomplete spinal cord injury: a case study.
    Kadivar Z; Sullivan JL; Eng DP; Pehlivan AU; O'Malley MK; Yozbatiran N; Francisco GE
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975429. PubMed ID: 22275630
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design & control of a 3D stroke rehabilitation platform.
    Cai Z; Tong D; Meadmore KL; Freeman CT; Hughes AM; Rogers E; Burridge JH
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975412. PubMed ID: 22275615
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A pilot study of robotic-assisted exercise for hand weakness after stroke.
    Stein J; Bishop J; Gillen G; Helbok R
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975426. PubMed ID: 22275627
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The development of an upper limb stroke rehabilitation robot: identification of clinical practices and design requirements through a survey of therapists.
    Lu EC; Wang RH; Hebert D; Boger J; Galea MP; Mihailidis A
    Disabil Rehabil Assist Technol; 2011; 6(5):420-31. PubMed ID: 21184626
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Including upper extremity robotic therapy during early inpatient stroke rehabilitation may not lead to better outcomes than conventional treatment.
    Pang MY
    J Physiother; 2014 Sep; 60(3):166. PubMed ID: 25084629
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.