BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 23949111)

  • 1. Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring.
    Najah A; El-Shafie A; Karim OA; El-Shafie AH
    Environ Sci Pollut Res Int; 2014 Feb; 21(3):1658-1670. PubMed ID: 23949111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling hourly dissolved oxygen concentration (DO) using two different adaptive neuro-fuzzy inference systems (ANFIS): a comparative study.
    Heddam S
    Environ Monit Assess; 2014 Jan; 186(1):597-619. PubMed ID: 24057665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling daily water temperature for rivers: comparison between adaptive neuro-fuzzy inference systems and artificial neural networks models.
    Zhu S; Heddam S; Nyarko EK; Hadzima-Nyarko M; Piccolroaz S; Wu S
    Environ Sci Pollut Res Int; 2019 Jan; 26(1):402-420. PubMed ID: 30406582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comment on "Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring A. Najah & A. El-Shafie & O. A. Karim & Amr H. El-Shafie. Environ Sci Pollut Res (2014) 21:1658-1670".
    Rajaee T; Khani S
    Environ Sci Pollut Res Int; 2016 Jan; 23(1):938-40. PubMed ID: 26013741
    [No Abstract]   [Full Text] [Related]  

  • 5. Comment on "Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring A. Najah & A. El-Shafie & O. A. Karim & Amr H. El-Shafie. Environ Sci Pollut Res (2014) 21:1658-1670".
    Heddam S
    Environ Sci Pollut Res Int; 2015 Mar; 22(5):3983. PubMed ID: 25391234
    [No Abstract]   [Full Text] [Related]  

  • 6. Prediction of potentially toxic elements in water resources using MLP-NN, RBF-NN, and ANFIS: a comprehensive review.
    Agbasi JC; Egbueri JC
    Environ Sci Pollut Res Int; 2024 May; 31(21):30370-30398. PubMed ID: 38641692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial neural network modeling of dissolved oxygen in the Heihe River, Northwestern China.
    Wen X; Fang J; Diao M; Zhang C
    Environ Monit Assess; 2013 May; 185(5):4361-71. PubMed ID: 23001527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of arsenic concentration in stream water using neuro fuzzy networks with factor analysis.
    Chang FJ; Chung CH; Chen PA; Liu CW; Coynel A; Vachaud G
    Sci Total Environ; 2014 Oct; 494-495():202-10. PubMed ID: 25046611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial neural network modeling of dissolved oxygen in reservoir.
    Chen WB; Liu WC
    Environ Monit Assess; 2014 Feb; 186(2):1203-17. PubMed ID: 24078053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of biochemical oxygen demand at the upstream catchment of a reservoir using adaptive neuro fuzzy inference system.
    Chiu YC; Chiang CW; Lee TY
    Water Sci Technol; 2017 Oct; 76(7-8):1739-1753. PubMed ID: 28991790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissolved oxygen modelling of the Yamuna River using different ANFIS models.
    Arora S; Keshari AK
    Water Sci Technol; 2021 Nov; 84(10-11):3359-3371. PubMed ID: 34850733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of the five-day biochemical oxygen demand and chemical oxygen demand in natural streams using machine learning methods.
    Najafzadeh M; Ghaemi A
    Environ Monit Assess; 2019 May; 191(6):380. PubMed ID: 31104155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving one-dimensional pollution dispersion modeling in rivers using ANFIS and ANN-based GA optimized models.
    Seifi A; Riahi-Madvar H
    Environ Sci Pollut Res Int; 2019 Jan; 26(1):867-885. PubMed ID: 30415370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling biochemical oxygen demand using improved neuro-fuzzy approach by marine predators algorithm.
    Adnan RM; Dai HL; Kisi O; Heddam S; Kim S; Kulls C; Zounemat-Kermani M
    Environ Sci Pollut Res Int; 2023 Sep; 30(41):94312-94333. PubMed ID: 37531049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two hybrid data-driven models for modeling water-air temperature relationship in rivers.
    Zhu S; Hadzima-Nyarko M; Gao A; Wang F; Wu J; Wu S
    Environ Sci Pollut Res Int; 2019 Apr; 26(12):12622-12630. PubMed ID: 30895536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissolved oxygen prediction using a new ensemble method.
    Kisi O; Alizamir M; Docheshmeh Gorgij A
    Environ Sci Pollut Res Int; 2020 Mar; 27(9):9589-9603. PubMed ID: 31925684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of an activated sludge process for effluent prediction-a comparative study using ANFIS and GLM regression.
    Araromi DO; Majekodunmi OT; Adeniran JA; Salawudeen TO
    Environ Monit Assess; 2018 Aug; 190(9):495. PubMed ID: 30069797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Support vector machine-an alternative to artificial neuron network for water quality forecasting in an agricultural nonpoint source polluted river?
    Liu M; Lu J
    Environ Sci Pollut Res Int; 2014 Sep; 21(18):11036-53. PubMed ID: 24894753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal and spatial characteristics of the water pollutant concentration in Huaihe River Basin from 2003 to 2012, China.
    Dou M; Zhang Y; Li G
    Environ Monit Assess; 2016 Sep; 188(9):522. PubMed ID: 27531013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling of dissolved oxygen content using artificial neural networks: Danube River, North Serbia, case study.
    Antanasijević D; Pocajt V; Povrenović D; Perić-Grujić A; Ristić M
    Environ Sci Pollut Res Int; 2013 Dec; 20(12):9006-13. PubMed ID: 23764983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.