These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 23949229)

  • 1. Nanoconfinement effects on hydrated excess protons in layered materials.
    Muñoz-Santiburcio D; Wittekindt C; Marx D
    Nat Commun; 2013; 4():2349. PubMed ID: 23949229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The curious case of the hydrated proton.
    Knight C; Voth GA
    Acc Chem Res; 2012 Jan; 45(1):101-9. PubMed ID: 21859071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water confined between sheets of mackinawite FeS minerals.
    Wittekindt C; Marx D
    J Chem Phys; 2012 Aug; 137(5):054710. PubMed ID: 22894374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio molecular dynamics simulation of the structure and proton transport dynamics of methanol-water solutions.
    Morrone JA; Haslinger KE; Tuckerman ME
    J Phys Chem B; 2006 Mar; 110(8):3712-20. PubMed ID: 16494428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of hydrated excess protons near phospholipid bilayers.
    Yamashita T; Voth GA
    J Phys Chem B; 2010 Jan; 114(1):592-603. PubMed ID: 19924872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoconfinement in Slit Pores Enhances Water Self-Dissociation.
    Muñoz-Santiburcio D; Marx D
    Phys Rev Lett; 2017 Aug; 119(5):056002. PubMed ID: 28949727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics.
    Marsalek O; Uhlig F; VandeVondele J; Jungwirth P
    Acc Chem Res; 2012 Jan; 45(1):23-32. PubMed ID: 21899274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the complex structural diffusion of proton holes in nanoconfined alkaline solutions within slit pores.
    Muñoz-Santiburcio D; Marx D
    Nat Commun; 2016 Aug; 7():12625. PubMed ID: 27550616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrated excess proton at water-hydrophobic interfaces.
    Iuchi S; Chen H; Paesani F; Voth GA
    J Phys Chem B; 2009 Apr; 113(13):4017-30. PubMed ID: 18821788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lifetimes of excess protons in water using a dissociative water potential.
    Lockwood GK; Garofalini SH
    J Phys Chem B; 2013 Apr; 117(15):4089-97. PubMed ID: 23565831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nature of proton transport in a water-filled carbon nanotube and in liquid water.
    Chen J; Li XZ; Zhang Q; Michaelides A; Wang E
    Phys Chem Chem Phys; 2013 May; 15(17):6344-9. PubMed ID: 23518762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grotthuss Molecular Dynamics Simulations for Modeling Proton Hopping in Electrosprayed Water Droplets.
    Konermann L; Kim S
    J Chem Theory Comput; 2022 Jun; 18(6):3781-3794. PubMed ID: 35544700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroxide ion can move faster than an excess proton through one-dimensional water chains in hydrophobic narrow pores.
    Bankura A; Chandra A
    J Phys Chem B; 2012 Aug; 116(32):9744-57. PubMed ID: 22793519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab initio molecular-dynamics simulation of aqueous proton solvation and transport revisited.
    Izvekov S; Voth GA
    J Chem Phys; 2005 Jul; 123(4):044505. PubMed ID: 16095367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and dynamics of concentrated hydrochloric acid solutions.
    Xu J; Izvekov S; Voth GA
    J Phys Chem B; 2010 Jul; 114(29):9555-62. PubMed ID: 20593833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton transport in triflic acid hydrates studied via path integral car-parrinello molecular dynamics.
    Hayes RL; Paddison SJ; Tuckerman ME
    J Phys Chem B; 2009 Dec; 113(52):16574-89. PubMed ID: 19968267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the solvation and transport of the hydrated proton in the perfluorosulfonic acid membrane nafion.
    Petersen MK; Voth GA
    J Phys Chem B; 2006 Sep; 110(37):18594-600. PubMed ID: 16970488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A first principles molecular dynamics study of the solvation structure and migration kinetics of an excess proton and a hydroxide ion in binary water-ammonia mixtures.
    Bankura A; Chandra A
    J Chem Phys; 2012 Mar; 136(11):114509. PubMed ID: 22443779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations of electrosprayed water nanodroplets: internal potential gradients, location of excess charge centers, and "hopping" protons.
    Ahadi E; Konermann L
    J Phys Chem B; 2009 May; 113(20):7071-80. PubMed ID: 19388688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.