These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23949414)

  • 1. The stoichiometry and energetics of oxygenic phototrophic growth.
    Minkevich IG; Fursova PV; Tjorlova LD; Tsygankov AA; Riznichenko GY
    Photosynth Res; 2013 Sep; 116(1):55-78. PubMed ID: 23949414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Mass-energy balance of the growth of phototropic purple bacteria].
    Minkevich IG; Tsygankov AA
    Biofizika; 2002; 47(4):663-72. PubMed ID: 12298203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-derived minimal metabolic models for Escherichia coli MG1655 with estimated in vivo respiratory ATP stoichiometry.
    Taymaz-Nikerel H; Borujeni AE; Verheijen PJ; Heijnen JJ; van Gulik WM
    Biotechnol Bioeng; 2010 Oct; 107(2):369-81. PubMed ID: 20506321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling cyanobacteria: from metabolism to integrative models of phototrophic growth.
    Steuer R; Knoop H; Machné R
    J Exp Bot; 2012 Mar; 63(6):2259-74. PubMed ID: 22450165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of the energetic biomass yield and efficiency of oxidative phosphorylation in cell-recycle cultures of Schizosaccharomyces pombe.
    Humberto de Queiroz J; Uribelarrea JL; Pareilleux A
    Appl Microbiol Biotechnol; 1993 Jul; 39(4-5):609-14. PubMed ID: 7763928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the Photosynthetic Yield of Cyanobacteria and Green Algae: Different Methods Give Different Answers.
    Schuurmans RM; van Alphen P; Schuurmans JM; Matthijs HC; Hellingwerf KJ
    PLoS One; 2015; 10(9):e0139061. PubMed ID: 26394153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer modeling of electron and proton transport in chloroplasts.
    Tikhonov AN; Vershubskii AV
    Biosystems; 2014 Jul; 121():1-21. PubMed ID: 24835748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of ATP Synthase c-Rings for Oxygenic Photosynthesis.
    Davis GA; Kramer DM
    Front Plant Sci; 2019; 10():1778. PubMed ID: 32082344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Type II NADPH Dehydrogenase Facilitates Cyclic Electron Flow, Energy-Dependent Quenching, and Chlororespiratory Metabolism during Acclimation of Chlamydomonas reinhardtii to Nitrogen Deprivation.
    Saroussi SI; Wittkopp TM; Grossman AR
    Plant Physiol; 2016 Apr; 170(4):1975-88. PubMed ID: 26858365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. THE THERMODYNAMIC EFFICIENCY (QUANTUM DEMAND) AND DYNAMICS OF PHOTOSYNTHETIC GROWTH.
    John Pirt S
    New Phytol; 1986 Jan; 102(1):3-37. PubMed ID: 33873885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Relationship between energetics and reduction level of organic substances as an important factor in metabolic energy balance].
    Minkevich IG
    Biofizika; 1980; 25(4):675-9. PubMed ID: 7417545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution and unique bioenergetic mechanisms in oxygenic photosynthesis.
    Iverson TM
    Curr Opin Chem Biol; 2006 Apr; 10(2):91-100. PubMed ID: 16504567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The trouble with oxygen: The ecophysiology of extant phototrophs and implications for the evolution of oxygenic photosynthesis.
    Hamilton TL
    Free Radic Biol Med; 2019 Aug; 140():233-249. PubMed ID: 31078729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlorobaculum tepidum Modulates Amino Acid Composition in Response to Energy Availability, as Revealed by a Systematic Exploration of the Energy Landscape of Phototrophic Sulfur Oxidation.
    Levy AT; Lee KH; Hanson TE
    Appl Environ Microbiol; 2016 Nov; 82(21):6431-6439. PubMed ID: 27565613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hidden square-root boundary between growth rate and biomass yield.
    Wong WW; Tran LM; Liao JC
    Biotechnol Bioeng; 2009 Jan; 102(1):73-80. PubMed ID: 18683253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters.
    Adadi R; Volkmer B; Milo R; Heinemann M; Shlomi T
    PLoS Comput Biol; 2012; 8(7):e1002575. PubMed ID: 22792053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential nutrient limitation of soil microbial biomass and metabolic quotients (qCO2): is there a biological stoichiometry of soil microbes?
    Hartman WH; Richardson CJ
    PLoS One; 2013; 8(3):e57127. PubMed ID: 23526933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial energetics and stoichiometry for biodegradation of aromatic compounds involving oxygenation reactions.
    Woo SH; Rittmann BE
    Biodegradation; 2000; 11(4):213-27. PubMed ID: 11432580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-scale constraint-based modeling of Geobacter metallireducens.
    Sun J; Sayyar B; Butler JE; Pharkya P; Fahland TR; Famili I; Schilling CH; Lovley DR; Mahadevan R
    BMC Syst Biol; 2009 Jan; 3():15. PubMed ID: 19175927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy coupling in Saccharomyces cerevisiae: selected opportunities for metabolic engineering.
    de Kok S; Kozak BU; Pronk JT; van Maris AJ
    FEMS Yeast Res; 2012 Jun; 12(4):387-97. PubMed ID: 22404754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.