BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 23949444)

  • 1. Fate choice of post-natal mesoderm progenitors: skeletal versus cardiac muscle plasticity.
    Costamagna D; Quattrocelli M; Duelen R; Sahakyan V; Perini I; Palazzolo G; Sampaolesi M
    Cell Mol Life Sci; 2014 Feb; 71(4):615-27. PubMed ID: 23949444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Bipotent Cardiac/Skeletal Myogenic Progenitors from MESP1+ Mesoderm.
    Chan SS; Hagen HR; Swanson SA; Stewart R; Boll KA; Aho J; Thomson JA; Kyba M
    Stem Cell Reports; 2016 Jan; 6(1):26-34. PubMed ID: 26771351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNAs promote skeletal muscle differentiation of mesodermal iPSC-derived progenitors.
    Giacomazzi G; Holvoet B; Trenson S; Caluwé E; Kravic B; Grosemans H; Cortés-Calabuig Á; Deroose CM; Huylebroeck D; Hashemolhosseini S; Janssens S; McNally E; Quattrocelli M; Sampaolesi M
    Nat Commun; 2017 Nov; 8(1):1249. PubMed ID: 29093487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration.
    De Angelis L; Berghella L; Coletta M; Lattanzi L; Zanchi M; Cusella-De Angelis MG; Ponzetto C; Cossu G
    J Cell Biol; 1999 Nov; 147(4):869-78. PubMed ID: 10562287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The contribution of Islet1-expressing splanchnic mesoderm cells to distinct branchiomeric muscles reveals significant heterogeneity in head muscle development.
    Nathan E; Monovich A; Tirosh-Finkel L; Harrelson Z; Rousso T; Rinon A; Harel I; Evans SM; Tzahor E
    Development; 2008 Feb; 135(4):647-57. PubMed ID: 18184728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pax3 and Tbx5 specify whether PDGFRα+ cells assume skeletal or cardiac muscle fate in differentiating embryonic stem cells.
    Magli A; Schnettler E; Swanson SA; Borges L; Hoffman K; Stewart R; Thomson JA; Keirstead SA; Perlingeiro RC
    Stem Cells; 2014 Aug; 32(8):2072-83. PubMed ID: 24677751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene regulatory networks and cell lineages that underlie the formation of skeletal muscle.
    Buckingham M
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):5830-5837. PubMed ID: 28584083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle stem cells and regenerative myogenesis.
    McKinnell IW; Parise G; Rudnicki MA
    Curr Top Dev Biol; 2005; 71():113-30. PubMed ID: 16344104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. miR669a and miR669q prevent skeletal muscle differentiation in postnatal cardiac progenitors.
    Crippa S; Cassano M; Messina G; Galli D; Galvez BG; Curk T; Altomare C; Ronzoni F; Toelen J; Gijsbers R; Debyser Z; Janssens S; Zupan B; Zaza A; Cossu G; Sampaolesi M
    J Cell Biol; 2011 Jun; 193(7):1197-212. PubMed ID: 21708977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myogenic progenitor specification from pluripotent stem cells.
    Magli A; Perlingeiro RRC
    Semin Cell Dev Biol; 2017 Dec; 72():87-98. PubMed ID: 29107681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neonatal epicardial-derived progenitors aquire myogenic traits in skeletal muscle, but not cardiac muscle.
    Andersen DC; Jensen CH; Skovrind I; Johnsen RH; Traustadottir GA; Aagaard KS; Ganesalingam S; Sheikh SP
    Int J Cardiol; 2016 Nov; 222():448-456. PubMed ID: 27505332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesp1 patterns mesoderm into cardiac, hematopoietic, or skeletal myogenic progenitors in a context-dependent manner.
    Chan SS; Shi X; Toyama A; Arpke RW; Dandapat A; Iacovino M; Kang J; Le G; Hagen HR; Garry DJ; Kyba M
    Cell Stem Cell; 2013 May; 12(5):587-601. PubMed ID: 23642367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of stem cells in skeletal and cardiac muscle repair.
    Grounds MD; White JD; Rosenthal N; Bogoyevitch MA
    J Histochem Cytochem; 2002 May; 50(5):589-610. PubMed ID: 11967271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice.
    Bittner RE; Schöfer C; Weipoltshammer K; Ivanova S; Streubel B; Hauser E; Freilinger M; Höger H; Elbe-Bürger A; Wachtler F
    Anat Embryol (Berl); 1999 May; 199(5):391-6. PubMed ID: 10221450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesodermal iPSC-derived progenitor cells functionally regenerate cardiac and skeletal muscle.
    Quattrocelli M; Swinnen M; Giacomazzi G; Camps J; Barthélemy I; Ceccarelli G; Caluwé E; Grosemans H; Thorrez L; Pelizzo G; Muijtjens M; Verfaillie CM; Blot S; Janssens S; Sampaolesi M
    J Clin Invest; 2015 Dec; 125(12):4463-82. PubMed ID: 26571398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular dynamics of myogenic cell migration: molecular mechanisms and implications for skeletal muscle cell therapies.
    Choi S; Ferrari G; Tedesco FS
    EMBO Mol Med; 2020 Dec; 12(12):e12357. PubMed ID: 33210465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skeletal muscle stem cells.
    Chen JC; Goldhamer DJ
    Reprod Biol Endocrinol; 2003 Nov; 1():101. PubMed ID: 14614776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence of heart and branchiomeric muscles in cardiopharyngeal mesoderm.
    Lescroart F; Dumas CE; Adachi N; Kelly RG
    Exp Cell Res; 2022 Jan; 410(1):112931. PubMed ID: 34798131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Making muscle: skeletal myogenesis
    Chal J; Pourquié O
    Development; 2017 Jun; 144(12):2104-2122. PubMed ID: 28634270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle stem cells in developmental and regenerative myogenesis.
    Kang JS; Krauss RS
    Curr Opin Clin Nutr Metab Care; 2010 May; 13(3):243-8. PubMed ID: 20098319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.