These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 23949656)

  • 1. Energy harvesting from the cardiovascular system, or how to get a little help from yourself.
    Pfenniger A; Jonsson M; Zurbuchen A; Koch VM; Vogel R
    Ann Biomed Eng; 2013 Nov; 41(11):2248-63. PubMed ID: 23949656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Power harvesting using PZT ceramics embedded in orthopedic implants.
    Chen H; Liu M; Jia C; Wang Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):2010-4. PubMed ID: 19812004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy scavenging sources for biomedical sensors.
    Romero E; Warrington RO; Neuman MR
    Physiol Meas; 2009 Sep; 30(9):R35-62. PubMed ID: 19687530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harvesting biomechanical energy or carrying batteries? An evaluation method based on a comparison of metabolic power.
    Schertzer E; Riemer R
    J Neuroeng Rehabil; 2015 Mar; 12():30. PubMed ID: 25879232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards Batteryless Cardiac Implantable Electronic Devices-The Swiss Way.
    Zurbuchen A; Haeberlin A; Pfenniger A; Bereuter L; Schaerer J; Jutzi F; Huber C; Fuhrer J; Vogel R
    IEEE Trans Biomed Circuits Syst; 2017 Feb; 11(1):78-86. PubMed ID: 27662683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy harvesting from the beating heart by a mass imbalance oscillation generator.
    Zurbuchen A; Pfenniger A; Stahel A; Stoeck CT; Vandenberghe S; Koch VM; Vogel R
    Ann Biomed Eng; 2013 Jan; 41(1):131-41. PubMed ID: 22805983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Tunable Resonance Cantilever for Cardiac Energy Harvesting.
    Secord TW; Audi MC
    Cardiovasc Eng Technol; 2019 Jun; 10(2):380-393. PubMed ID: 30710216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Can an electric pacemaker be powered by the body's own energy? A medico-technical speculation].
    Benkert G; Fabian W
    Fortschr Med; 1981 Aug; 99(31-32):1211-3. PubMed ID: 7274935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging Implantable Energy Harvesters and Self-Powered Implantable Medical Electronics.
    Jiang D; Shi B; Ouyang H; Fan Y; Wang ZL; Li Z
    ACS Nano; 2020 Jun; 14(6):6436-6448. PubMed ID: 32459086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Instrumented hip implants: electric supply systems.
    Soares dos Santos MP; Ferreira JA; Ramos A; Simões JA; Morais R; Silva NM; Santos PM; Reis MJ; Oliveira T
    J Biomech; 2013 Oct; 46(15):2561-71. PubMed ID: 24050511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-flexible Piezoelectric Devices Integrated with Heart to Harvest the Biomechanical Energy.
    Lu B; Chen Y; Ou D; Chen H; Diao L; Zhang W; Zheng J; Ma W; Sun L; Feng X
    Sci Rep; 2015 Nov; 5():16065. PubMed ID: 26538375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new skeletal muscle linear-pull energy convertor as a power source for prosthetic circulatory support devices [corrected].
    Farrar DJ; Hill JD
    J Heart Lung Transplant; 1992; 11(5):S341-50. PubMed ID: 1420227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a prosthetic swing-phase controller with electrical power generation.
    Andrysek J; Liang T; Steinnagel B
    IEEE Trans Neural Syst Rehabil Eng; 2009 Aug; 17(4):390-6. PubMed ID: 19497830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multifunctional Pacemaker Lead for Cardiac Energy Harvesting and Pressure Sensing.
    Dong L; Closson AB; Jin C; Nie Y; Cabe A; Escobedo D; Huang S; Trase I; Xu Z; Chen Z; Feldman MD; Zhang JXJ
    Adv Healthc Mater; 2020 Jun; 9(11):e2000053. PubMed ID: 32347010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear optimization of acoustic energy harvesting using piezoelectric devices.
    Lallart M; Guyomar D; Richard C; Petit L
    J Acoust Soc Am; 2010 Nov; 128(5):2739-48. PubMed ID: 21110569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design optimization of contactless generator for implantable energy harvesting system utilizing electrically-stimulated muscle.
    Mochida T; Hijikata W
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():358-363. PubMed ID: 31945915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial fuel cell as power supply for implantable medical devices: a novel configuration design for simulating colonic environment.
    Dong K; Jia B; Yu C; Dong W; Du F; Liu H
    Biosens Bioelectron; 2013 Mar; 41():916-9. PubMed ID: 23122754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots.
    Busch MH; Vollmann W; Grönemeyer DH
    Biomed Eng Online; 2006 May; 5():35. PubMed ID: 16729878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a contactless energy harvesting system driven by contraction of skeletal muscle for implantable medical devices.
    Mochida T; Hijikata W
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4648-4652. PubMed ID: 30441387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential of subdermal solar energy harvesting for medical device applications based on worldwide meteorological data.
    Tholl MV; Zurbuchen A; Tanner H; Haeberlin A
    J Biomed Opt; 2021 Mar; 26(3):. PubMed ID: 33694336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.