These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 23950056)

  • 1. A nontoxic additive to introduce x-ray contrast into poly(lactic acid). Implications for transient medical implants such as bioresorbable coronary vascular scaffolds.
    Wang Y; van den Akker NM; Molin DG; Gagliardi M; van der Marel C; Lutz M; Knetsch ML; Koole LH
    Adv Healthc Mater; 2014 Feb; 3(2):290-9. PubMed ID: 23950056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decade of histological follow-up for a fully biodegradable poly-L-lactic acid coronary stent (Igaki-Tamai stent) in humans: are bioresorbable scaffolds the answer?
    Nishio S; Takeda S; Kosuga K; Okada M; Kyo E; Tsuji T; Takeuchi E; Terashima T; Inuzuka Y; Hata T; Takeuchi Y; Harita T; Seki J; Ikeguchi S
    Circulation; 2014 Jan; 129(4):534-5. PubMed ID: 24470476
    [No Abstract]   [Full Text] [Related]  

  • 3. A next-generation bioresorbable coronary scaffold system: from bench to first clinical evaluation: 6- and 12-month clinical and multimodality imaging results.
    Verheye S; Ormiston JA; Stewart J; Webster M; Sanidas E; Costa R; Costa JR; Chamie D; Abizaid AS; Pinto I; Morrison L; Toyloy S; Bhat V; Yan J; Abizaid A
    JACC Cardiovasc Interv; 2014 Jan; 7(1):89-99. PubMed ID: 24139932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Head-to-head comparison of a drug-free early programmed dismantling polylactic acid bioresorbable scaffold and a metallic stent in the porcine coronary artery: six-month angiography and optical coherence tomographic follow-up study.
    Durand E; Sharkawi T; Leclerc G; Raveleau M; van der Leest M; Vert M; Lafont A
    Circ Cardiovasc Interv; 2014 Feb; 7(1):70-9. PubMed ID: 24368820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current status of bioresorbable scaffolds in the treatment of coronary artery disease.
    Wiebe J; Nef HM; Hamm CW
    J Am Coll Cardiol; 2014 Dec; 64(23):2541-51. PubMed ID: 25500240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro biocompatibility evaluation of bioresorbable copolymers prepared from L-lactide, 1, 3-trimethylene carbonate, and glycolide for cardiovascular applications.
    Shen X; Su F; Dong J; Fan Z; Duan Y; Li S
    J Biomater Sci Polym Ed; 2015; 26(8):497-514. PubMed ID: 25783945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro hemocompatibility studies of (poly(L-lactide) and poly(L-lactide-co-glycolide) as materials for bioresorbable stents manufacture.
    Szymonowicz M; Rybak Z; Witkiewicz W; Pezowicz C; Filipiak J
    Acta Bioeng Biomech; 2014; 16(4):131-9. PubMed ID: 25739129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New tubular bioabsorbable knitted airway stent: biocompatibility and mechanical strength.
    Saito Y; Minami K; Kobayashi M; Nakao Y; Omiya H; Imamura H; Sakaida N; Okamura A
    J Thorac Cardiovasc Surg; 2002 Jan; 123(1):161-7. PubMed ID: 11782770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of early vascular morphological changes between bioresorbable poly-L-lactic acid scaffolds and metallic stents in porcine iliac arteries.
    Sekimoto Y; Obara H; Matsubara K; Fujimura N; Harada H; Kitagawa Y
    Organogenesis; 2017 Apr; 13(2):29-38. PubMed ID: 28102777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Study of Degradation Behavior of Bioresorbable Cardiovascular Scaffolds.
    Luo Q; Huang C; Wang S; Meng J; Li Z; Chang Z; Zhu Y; Hua Z
    Cardiovasc Eng Technol; 2015 Mar; 6(1):71-9. PubMed ID: 26577104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intravascular bioresorbable polymeric stents: a potential alternative to current drug eluting metal stents.
    Sharkawi T; Cornhill F; Lafont A; Sabaria P; Vert M
    J Pharm Sci; 2007 Nov; 96(11):2829-37. PubMed ID: 17979210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical properties and in vitro degradation of bioresorbable knitted stents.
    Nuutinen JP; Välimaa T; Clerc C; Törmälä P
    J Biomater Sci Polym Ed; 2002; 13(12):1313-23. PubMed ID: 12555898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-Term (>10 Years) clinical outcomes of first-in-human biodegradable poly-l-lactic acid coronary stents: Igaki-Tamai stents.
    Nishio S; Kosuga K; Igaki K; Okada M; Kyo E; Tsuji T; Takeuchi E; Inuzuka Y; Takeda S; Hata T; Takeuchi Y; Kawada Y; Harita T; Seki J; Akamatsu S; Hasegawa S; Bruining N; Brugaletta S; de Winter S; Muramatsu T; Onuma Y; Serruys PW; Ikeguchi S
    Circulation; 2012 May; 125(19):2343-53. PubMed ID: 22508795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Six-month evaluation of novel bioabsorbable scaffolds composed of poly-L-lactic acid and amorphous calcium phosphate nanoparticles in porcine coronary arteries.
    Dinh Nguyen T; Feng G; Yi X; Lyu Y; Lan Z; Xia J; Wu T; Jiang X
    J Biomater Appl; 2018 Aug; 33(2):227-233. PubMed ID: 30096995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular responses of vascular smooth muscle cells to paclitaxel-eluting bioresorbable stent materials.
    Nguyen KT; Shaikh N; Wawro D; Zhang S; Schwade ND; Eberhart RC; Tang L
    J Biomed Mater Res A; 2004 Jun; 69(3):513-24. PubMed ID: 15127398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Development of new skin substitutes based on bioresorbable polymer for treatment of severe skin defects].
    Garric X; Vert M; Molès JP
    Ann Pharm Fr; 2008; 66(5-6):313-8. PubMed ID: 19061732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable stents with elastic memory.
    Venkatraman SS; Tan LP; Joso JF; Boey YC; Wang X
    Biomaterials; 2006 Mar; 27(8):1573-8. PubMed ID: 16181673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug-eluting biodegradable poly-D/L-lactic acid vascular stents: an experimental pilot study.
    Uurto I; Mikkonen J; Parkkinen J; Keski-Nisula L; Nevalainen T; Kellomäki M; Törmälä P; Salenius JP
    J Endovasc Ther; 2005 Jun; 12(3):371-9. PubMed ID: 15943514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a biodegradable ureteric stent: surface modification and in vitro assessment.
    Brauers A; Thissen H; Pfannschmidt O; Bienert H; Foerster A; Klee D; Michaeli W; Höcker H; Jakse G
    J Endourol; 1997 Dec; 11(6):399-403. PubMed ID: 9440847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis.
    Sung HJ; Meredith C; Johnson C; Galis ZS
    Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.