These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 23950701)

  • 1. Ultrasensitivity in phosphorylation-dephosphorylation cycles with little substrate.
    Martins BM; Swain PS
    PLoS Comput Biol; 2013; 9(8):e1003175. PubMed ID: 23950701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bell-shaped and ultrasensitive dose-response in phosphorylation-dephosphorylation cycles: the role of kinase-phosphatase complex formation.
    Szomolay B; Shahrezaei V
    BMC Syst Biol; 2012 Apr; 6():26. PubMed ID: 22531112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective reaction rates in diffusion-limited phosphorylation-dephosphorylation cycles.
    Szymańska P; Kochańczyk M; Miękisz J; Lipniacki T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022702. PubMed ID: 25768526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasensitivity in multisite phosphorylation of membrane-anchored proteins.
    Dushek O; van der Merwe PA; Shahrezaei V
    Biophys J; 2011 Mar; 100(5):1189-97. PubMed ID: 21354391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic and kinetic analysis of sensitivity amplification in biological signal transduction.
    Qian H
    Biophys Chem; 2003 Sep; 105(2-3):585-93. PubMed ID: 14499920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reciprocal regulation as a source of ultrasensitivity in two-component systems with a bifunctional sensor kinase.
    Straube R
    PLoS Comput Biol; 2014 May; 10(5):e1003614. PubMed ID: 24809699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantitative model for ordered Cdk substrate dephosphorylation during mitotic exit.
    Bouchoux C; Uhlmann F
    Cell; 2011 Nov; 147(4):803-14. PubMed ID: 22078879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biphasic responses in multi-site phosphorylation systems.
    Suwanmajo T; Krishnan J
    J R Soc Interface; 2013 Dec; 10(89):20130742. PubMed ID: 24108693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A combination of multisite phosphorylation and substrate sequestration produces switchlike responses.
    Liu X; Bardwell L; Nie Q
    Biophys J; 2010 Apr; 98(8):1396-407. PubMed ID: 20409458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale functional analysis of the roles of phosphorylation in yeast metabolic pathways.
    Schulz JC; Zampieri M; Wanka S; von Mering C; Sauer U
    Sci Signal; 2014 Nov; 7(353):rs6. PubMed ID: 25429078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploration of trade-offs between steady-state and dynamic properties in signaling cycles.
    Radivojevic A; Chachuat B; Bonvin D; Hatzimanikatis V
    Phys Biol; 2012 Aug; 9(4):045010. PubMed ID: 22872041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic models of phosphorylation cycles: a systematic approach using the rapid-equilibrium approximation for protein-protein interactions.
    Salazar C; Höfer T
    Biosystems; 2006; 83(2-3):195-206. PubMed ID: 16233950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast.
    Bodenmiller B; Wanka S; Kraft C; Urban J; Campbell D; Pedrioli PG; Gerrits B; Picotti P; Lam H; Vitek O; Brusniak MY; Roschitzki B; Zhang C; Shokat KM; Schlapbach R; Colman-Lerner A; Nolan GP; Nesvizhskii AI; Peter M; Loewith R; von Mering C; Aebersold R
    Sci Signal; 2010 Dec; 3(153):rs4. PubMed ID: 21177495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The geometry of multisite phosphorylation.
    Manrai AK; Gunawardena J
    Biophys J; 2008 Dec; 95(12):5533-43. PubMed ID: 18849417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-Site phosphorylation systems with 2n-1 steady states.
    Flockerzi D; Holstein K; Conradi C
    Bull Math Biol; 2014 Aug; 76(8):1892-916. PubMed ID: 25033781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introducing total substrates simplifies theoretical analysis at non-negligible enzyme concentrations: pseudo first-order kinetics and the loss of zero-order ultrasensitivity.
    Pedersen MG; Bersani AM
    J Math Biol; 2010 Feb; 60(2):267-83. PubMed ID: 19333602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasensitivity part II: multisite phosphorylation, stoichiometric inhibitors, and positive feedback.
    Ferrell JE; Ha SH
    Trends Biochem Sci; 2014 Nov; 39(11):556-69. PubMed ID: 25440716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate specificity of the phosphorylated fructose-1,6-bisphosphatase dephosphorylating protein phosphatase from Saccharomyces cerevisiae.
    Manhart A; Holzer H
    Yeast; 1988 Sep; 4(3):227-32. PubMed ID: 2849261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequestration shapes the response of signal transduction cascades.
    Blüthgen N
    IUBMB Life; 2006 Nov; 58(11):659-63. PubMed ID: 17085386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A specific alkaline phosphatase from Saccharomyces cerevisiae with protein phosphatase activity.
    Tuleva B; Vasileva-Tonkova E; Galabova D
    FEMS Microbiol Lett; 1998 Apr; 161(1):139-44. PubMed ID: 9561742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.