These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 23950701)

  • 21. Ultrasensitive dual phosphorylation dephosphorylation cycle kinetics exhibits canonical competition behavior.
    Huang Q; Qian H
    Chaos; 2009 Sep; 19(3):033109. PubMed ID: 19791989
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Competition effects shape the response sensitivity and kinetics of phosphorylation cycles in cell signaling.
    Salazar C; Höfer T
    Ann N Y Acad Sci; 2006 Dec; 1091():517-30. PubMed ID: 17341641
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases.
    Bertram PG; Choi JH; Carvalho J; Ai W; Zeng C; Chan TF; Zheng XF
    J Biol Chem; 2000 Nov; 275(46):35727-33. PubMed ID: 10940301
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Substrate priming enhances phosphorylation by the budding yeast kinases Kin1 and Kin2.
    Jeschke GR; Lou HJ; Weise K; Hammond CI; Demonch M; Brennwald P; Turk BE
    J Biol Chem; 2018 Nov; 293(47):18353-18364. PubMed ID: 30305396
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein phosphorylation driven by intracellular calcium oscillations: a kinetic analysis.
    Dupont G; Goldbeter A
    Biophys Chem; 1992 Apr; 42(3):257-70. PubMed ID: 1316185
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Signaling cascades: consequences of varying substrate and phosphatase levels.
    Feliu E; Knudsen M; Wiuf C
    Adv Exp Med Biol; 2012; 736():81-94. PubMed ID: 22161323
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatio-temporal correlations can drastically change the response of a MAPK pathway.
    Takahashi K; Tanase-Nicola S; ten Wolde PR
    Proc Natl Acad Sci U S A; 2010 Feb; 107(6):2473-8. PubMed ID: 20133748
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An allosteric conduit facilitates dynamic multisite substrate recognition by the SCF
    Csizmok V; Orlicky S; Cheng J; Song J; Bah A; Delgoshaie N; Lin H; Mittag T; Sicheri F; Chan HS; Tyers M; Forman-Kay JD
    Nat Commun; 2017 Jan; 8():13943. PubMed ID: 28045046
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphatase and Kinase Substrate Specificity Profiling with Pooled Synthetic Peptides and Mass Spectrometry.
    DeMarco AG; Pascuzzi PE; Tao WA; Hall MC
    Methods Mol Biol; 2021; 2329():51-70. PubMed ID: 34085215
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Asymmetrically Balanced Organization of Kinases versus Phosphatases across Eukaryotes Determines Their Distinct Impacts.
    Smoly I; Shemesh N; Ziv-Ukelson M; Ben-Zvi A; Yeger-Lotem E
    PLoS Comput Biol; 2017 Jan; 13(1):e1005221. PubMed ID: 28135269
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Slm1 and slm2 are novel substrates of the calcineurin phosphatase required for heat stress-induced endocytosis of the yeast uracil permease.
    Bultynck G; Heath VL; Majeed AP; Galan JM; Haguenauer-Tsapis R; Cyert MS
    Mol Cell Biol; 2006 Jun; 26(12):4729-45. PubMed ID: 16738335
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gln3 phosphorylation and intracellular localization in nutrient limitation and starvation differ from those generated by rapamycin inhibition of Tor1/2 in Saccharomyces cerevisiae.
    Cox KH; Kulkarni A; Tate JJ; Cooper TG
    J Biol Chem; 2004 Mar; 279(11):10270-8. PubMed ID: 14679193
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A cell-signaling network temporally resolves specific versus promiscuous phosphorylation.
    Kanshin E; Bergeron-Sandoval LP; Isik SS; Thibault P; Michnick SW
    Cell Rep; 2015 Feb; 10(7):1202-14. PubMed ID: 25704821
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PP2C phosphatases promote autophagy by dephosphorylation of the Atg1 complex.
    Memisoglu G; Eapen VV; Yang Y; Klionsky DJ; Haber JE
    Proc Natl Acad Sci U S A; 2019 Jan; 116(5):1613-1620. PubMed ID: 30655342
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrasensitivity part I: Michaelian responses and zero-order ultrasensitivity.
    Ferrell JE; Ha SH
    Trends Biochem Sci; 2014 Oct; 39(10):496-503. PubMed ID: 25240485
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unusual inositol triphosphate metabolism in yeast.
    Robinson KS; Wheals AE; Rose AH; Dickinson JR
    Microbiology (Reading); 1996 Jun; 142 ( Pt 6)():1333-1334. PubMed ID: 8704972
    [No Abstract]   [Full Text] [Related]  

  • 37. Delineating functional principles of the bow tie structure of a kinase-phosphatase network in the budding yeast.
    Abd-Rabbo D; Michnick SW
    BMC Syst Biol; 2017 Mar; 11(1):38. PubMed ID: 28298210
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differences in kinetic properties of phospho and dephospho forms of fructose-6-phosphate, 2-kinase and fructose 2,6-bisphosphatase.
    Sakakibara R; Kitajima S; Uyeda K
    J Biol Chem; 1984 Jan; 259(1):41-6. PubMed ID: 6323408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A conserved phosphatase destroys toxic glycolytic side products in mammals and yeast.
    Collard F; Baldin F; Gerin I; Bolsée J; Noël G; Graff J; Veiga-da-Cunha M; Stroobant V; Vertommen D; Houddane A; Rider MH; Linster CL; Van Schaftingen E; Bommer GT
    Nat Chem Biol; 2016 Aug; 12(8):601-7. PubMed ID: 27294321
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elucidating human phosphatase-substrate networks.
    Li X; Wilmanns M; Thornton J; Köhn M
    Sci Signal; 2013 May; 6(275):rs10. PubMed ID: 23674824
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.