These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23950764)

  • 1. Fluctuating Hydrodynamics Approach for the Simulation of Nanoparticle Brownian Motion in a Newtonian Fluid.
    Uma B; Ayyaswamy PS; Radhakrishnan R; Eckmann DM
    Int J Micronano Scale Transp; 2012 Jun; 3(1-2):13-20. PubMed ID: 23950764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid approach for the simulation of a nearly neutrally buoyant nanoparticle thermal motion in an incompressible Newtonian fluid medium.
    Uma B; Radhakrishnan R; Eckmann DM; Ayyaswamy PS
    J Heat Transfer; 2013 Jan; 135(1):0110111-9. PubMed ID: 23814315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticle Brownian motion and hydrodynamic interactions in the presence of flow fields.
    Uma B; Swaminathan TN; Radhakrishnan R; Eckmann DM; Ayyaswamy PS
    Phys Fluids (1994); 2011 Jul; 23(7):73602-7360215. PubMed ID: 21918592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MODELING OF A NANOPARTICLE MOTION IN A NEWTONIAN FLUID: A COMPARISON BETWEEN FLUCTUATING HYDRODYNAMICS AND GENERALIZED LANGEVIN PROCEDURES.
    Uma B; Ayyaswamy PS; Radhakrishnan R; Eckmann DM
    Proc ASME Micro Nanoscale Heat Mass Transf Int Conf (2012); 2012 Mar; 2012():735-743. PubMed ID: 25621317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid formalism combining fluctuating hydrodynamics and generalized Langevin dynamics for the simulation of nanoparticle thermal motion in an incompressible fluid medium.
    Uma B; Eckmann DM; Ayyaswamy PS; Radhakrishnan R
    Mol Phys; 2012; 110(11-12):1057-1067. PubMed ID: 22865935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocarrier-Cell Surface Adhesive and Hydrodynamic Interactions: Ligand-Receptor Bond Sensitivity Study.
    Uma B; Radhakrishnan R; Eckmann DM; Ayyaswamy PS
    J Nanotechnol Eng Med; 2012 Aug; 3(3):310101-310108. PubMed ID: 23917171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized Langevin dynamics of a nanoparticle using a finite element approach: thermostating with correlated noise.
    Uma B; Swaminathan TN; Ayyaswamy PS; Eckmann DM; Radhakrishnan R
    J Chem Phys; 2011 Sep; 135(11):114104. PubMed ID: 21950847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motion of a nano-spheroid in a cylindrical vessel flow: Brownian and hydrodynamic interactions.
    Ramakrishnan N; Wang Y; Eckmann DM; Ayyaswamy PS; Radhakrishnan R
    J Fluid Mech; 2017 Jun; 821():117-152. PubMed ID: 29109590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effective temperature for the thermal fluctuations in hot Brownian motion.
    Srivastava M; Chakraborty D
    J Chem Phys; 2018 May; 148(20):204902. PubMed ID: 29865851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the wall on the velocity autocorrelation function and long-time tail of Brownian motion in a viscous compressible fluid.
    Felderhof BU
    J Chem Phys; 2005 Nov; 123(18):184903. PubMed ID: 16292935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brownian motion of finite-inertia particles in a simple shear flow.
    Drossinos Y; Reeks MW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031113. PubMed ID: 15903412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Stokes-Einstein relation at moderate Schmidt number.
    Balboa Usabiaga F; Xie X; Delgado-Buscalioni R; Donev A
    J Chem Phys; 2013 Dec; 139(21):214113. PubMed ID: 24320370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticle stochastic motion in the inertial regime and hydrodynamic interactions close to a cylindrical wall.
    Vitoshkin H; Yu HY; Eckmann DM; Ayyaswamy PS; Radhakrishnan R
    Phys Rev Fluids; 2016; 1():. PubMed ID: 27830213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the wall on the velocity autocorrelation function and long-time tail of Brownian motion.
    Felderhof BU
    J Phys Chem B; 2005 Nov; 109(45):21406-12. PubMed ID: 16853777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamically Coupled Brownian Dynamics: A coarse-grain particle-based Brownian dynamics technique with hydrodynamic interactions for modeling self-developing flow of polymer solutions.
    Ahuja VR; van der Gucht J; Briels WJ
    J Chem Phys; 2018 Jan; 148(3):034902. PubMed ID: 29352779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational fluid dynamic simulation of two-fluid non-Newtonian nanohemodynamics through a diseased artery with a stenosis and aneurysm.
    Dubey A; Vasu B; Anwar Bég O; Gorla RSR; Kadir A
    Comput Methods Biomech Biomed Engin; 2020 Jun; 23(8):345-371. PubMed ID: 32098508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MOTION OF A RIGID CYLINDER BETWEEN PARALLEL PLATES IN STOKES FLOW: PART 2: POISEUILLE AND COUETTE FLOW.
    Dvinsky AS; Popel AS
    Comput Fluids; 1987; 15(4):405-419. PubMed ID: 28943672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic description of the long-time tails of the linear and rotational velocity autocorrelation functions of a particle in a confined geometry.
    Frydel D; Rice SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061404. PubMed ID: 18233847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bridging the gap between molecular dynamics and hydrodynamics in nanoscale Brownian motions.
    Mizuta K; Ishii Y; Kim K; Matubayasi N
    Soft Matter; 2019 May; 15(21):4380-4390. PubMed ID: 31086871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motion of a spherical particle in a cylindrical channel using arbitrary Lagrangian-Eulerian method.
    Al Quddus N; Moussa WA; Bhattacharjee S
    J Colloid Interface Sci; 2008 Jan; 317(2):620-30. PubMed ID: 17949729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.