These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 23950966)
1. Alternative splice variants in TIM barrel proteins from human genome correlate with the structural and evolutionary modularity of this versatile protein fold. Ochoa-Leyva A; Montero-Morán G; Saab-Rincón G; Brieba LG; Soberón X PLoS One; 2013; 8(8):e70582. PubMed ID: 23950966 [TBL] [Abstract][Full Text] [Related]
2. Conservation of the folding mechanism between designed primordial (βα)8-barrel proteins and their modern descendant. Carstensen L; Sperl JM; Bocola M; List F; Schmid FX; Sterner R J Am Chem Soc; 2012 Aug; 134(30):12786-91. PubMed ID: 22758610 [TBL] [Abstract][Full Text] [Related]
3. The structure of a truncated phosphoribosylanthranilate isomerase suggests a unified model for evolution of the (βα)8 barrel fold. Setiyaputra S; Mackay JP; Patrick WM J Mol Biol; 2011 Apr; 408(2):291-303. PubMed ID: 21354426 [TBL] [Abstract][Full Text] [Related]
4. Diversity in αβ and βα Loop Connections in TIM Barrel Proteins: Implications for Stability and Design of the Fold. Kadumuri RV; Vadrevu R Interdiscip Sci; 2018 Dec; 10(4):805-812. PubMed ID: 29064074 [TBL] [Abstract][Full Text] [Related]
5. Betaalpha-hairpin clamps brace betaalphabeta modules and can make substantive contributions to the stability of TIM barrel proteins. Yang X; Kathuria SV; Vadrevu R; Matthews CR PLoS One; 2009 Sep; 4(9):e7179. PubMed ID: 19787060 [TBL] [Abstract][Full Text] [Related]
6. Diversifying de novo TIM barrels by hallucination. Beck J; Shanmugaratnam S; Höcker B Protein Sci; 2024 Jun; 33(6):e5001. PubMed ID: 38723111 [TBL] [Abstract][Full Text] [Related]
7. Divergent evolution of (betaalpha)8-barrel enzymes. Henn-Sax M; Höcker B; Wilmanns M; Sterner R Biol Chem; 2001 Sep; 382(9):1315-20. PubMed ID: 11688714 [TBL] [Abstract][Full Text] [Related]
8. Extension of a de novo TIM barrel with a rationally designed secondary structure element. Wiese JG; Shanmugaratnam S; Höcker B Protein Sci; 2021 May; 30(5):982-989. PubMed ID: 33723882 [TBL] [Abstract][Full Text] [Related]
9. Mimicking enzyme evolution by generating new (betaalpha)8-barrels from (betaalpha)4-half-barrels. Höcker B; Claren J; Sterner R Proc Natl Acad Sci U S A; 2004 Nov; 101(47):16448-53. PubMed ID: 15539462 [TBL] [Abstract][Full Text] [Related]
10. Physics-based approach to extend a de novo TIM barrel with rationally designed helix-loop-helix motifs. Kordes S; Beck J; Shanmugaratnam S; Flecks M; Höcker B Protein Eng Des Sel; 2023 Jan; 36():. PubMed ID: 37707513 [TBL] [Abstract][Full Text] [Related]
11. De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy. Huang PS; Feldmeier K; Parmeggiani F; Velasco DAF; Höcker B; Baker D Nat Chem Biol; 2016 Jan; 12(1):29-34. PubMed ID: 26595462 [TBL] [Abstract][Full Text] [Related]
12. A conserved folding nucleus sculpts the free energy landscape of bacterial and archaeal orthologs from a divergent TIM barrel family. Jain R; Muneeruddin K; Anderson J; Harms MJ; Shaffer SA; Matthews CR Proc Natl Acad Sci U S A; 2021 Apr; 118(17):. PubMed ID: 33875592 [TBL] [Abstract][Full Text] [Related]
13. Creation of active TIM barrel enzymes through genetic fusion of half-barrel domain constructs derived from two distantly related glycosyl hydrolases. Sharma P; Kaila P; Guptasarma P FEBS J; 2016 Dec; 283(23):4340-4356. PubMed ID: 27749025 [TBL] [Abstract][Full Text] [Related]
14. Long-range side-chain-main-chain interactions play crucial roles in stabilizing the (betaalpha)8 barrel motif of the alpha subunit of tryptophan synthase. Yang X; Vadrevu R; Wu Y; Matthews CR Protein Sci; 2007 Jul; 16(7):1398-409. PubMed ID: 17586773 [TBL] [Abstract][Full Text] [Related]
15. A beta alpha-barrel built by the combination of fragments from different folds. Bharat TA; Eisenbeis S; Zeth K; Höcker B Proc Natl Acad Sci U S A; 2008 Jul; 105(29):9942-7. PubMed ID: 18632584 [TBL] [Abstract][Full Text] [Related]
16. Structural analysis of kinetic folding intermediates for a TIM barrel protein, indole-3-glycerol phosphate synthase, by hydrogen exchange mass spectrometry and Gō model simulation. Gu Z; Rao MK; Forsyth WR; Finke JM; Matthews CR J Mol Biol; 2007 Nov; 374(2):528-46. PubMed ID: 17942114 [TBL] [Abstract][Full Text] [Related]
17. Dissection of a (betaalpha)8-barrel enzyme into two folded halves. Höcker B; Beismann-Driemeyer S; Hettwer S; Lustig A; Sterner R Nat Struct Biol; 2001 Jan; 8(1):32-6. PubMed ID: 11135667 [TBL] [Abstract][Full Text] [Related]
18. Recurring sequence-structure motifs in (βα) Wang J; Zhang T; Liu R; Song M; Wang J; Hong J; Chen Q; Liu H Biochim Biophys Acta Proteins Proteom; 2017 Feb; 1865(2):165-175. PubMed ID: 27836620 [TBL] [Abstract][Full Text] [Related]
19. An allosteric pathway explains beneficial fitness in yeast for long-range mutations in an essential TIM barrel enzyme. Chan YH; Zeldovich KB; Matthews CR Protein Sci; 2020 Sep; 29(9):1911-1923. PubMed ID: 32643222 [TBL] [Abstract][Full Text] [Related]
20. Clusters of branched aliphatic side chains serve as cores of stability in the native state of the HisF TIM barrel protein. Gangadhara BN; Laine JM; Kathuria SV; Massi F; Matthews CR J Mol Biol; 2013 Mar; 425(6):1065-81. PubMed ID: 23333740 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]