These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 23951121)

  • 1. Response of copepods to elevated pCO2 and environmental copper as co-stressors--a multigenerational study.
    Fitzer SC; Caldwell GS; Clare AS; Upstill-Goddard RC; Bentley MG
    PLoS One; 2013; 8(8):e71257. PubMed ID: 23951121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of ocean acidification on copepods.
    Wang M; Jeong CB; Lee YH; Lee JS
    Aquat Toxicol; 2018 Mar; 196():17-24. PubMed ID: 29324394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ocean acidification increases copper toxicity to the early life history stages of the polychaete Arenicola marina in artificial seawater.
    Campbell AL; Mangan S; Ellis RP; Lewis C
    Environ Sci Technol; 2014 Aug; 48(16):9745-53. PubMed ID: 25033036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ocean acidification on the nutritional quality of marine phytoplankton for copepod reproduction.
    Meyers MT; Cochlan WP; Carpenter EJ; Kimmerer WJ
    PLoS One; 2019; 14(5):e0217047. PubMed ID: 31107897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alleviation of mercury toxicity to a marine copepod under multigenerational exposure by ocean acidification.
    Li Y; Wang WX; Wang M
    Sci Rep; 2017 Mar; 7(1):324. PubMed ID: 28336926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute and chronic toxicities of zinc pyrithione alone and in combination with copper to the marine copepod Tigriopus japonicus.
    Bao VW; Lui GC; Leung KM
    Aquat Toxicol; 2014 Dec; 157():81-93. PubMed ID: 25456222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antagonistic interplay between pH and food resources affects copepod traits and performance in a year-round upwelling system.
    Aguilera VM; Vargas CA; Dam HG
    Sci Rep; 2020 Jan; 10(1):62. PubMed ID: 31919456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct and indirect effects of elevated CO2 are revealed through shifts in phytoplankton, copepod development, and fatty acid accumulation.
    McLaskey AK; Keister JE; Schoo KL; Olson MB; Love BA
    PLoS One; 2019; 14(3):e0213931. PubMed ID: 30870509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ocean acidification increases copper toxicity differentially in two key marine invertebrates with distinct acid-base responses.
    Lewis C; Ellis RP; Vernon E; Elliot K; Newbatt S; Wilson RW
    Sci Rep; 2016 Feb; 6():21554. PubMed ID: 26899803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Have we been underestimating the effects of ocean acidification in zooplankton?
    Cripps G; Lindeque P; Flynn KJ
    Glob Chang Biol; 2014 Nov; 20(11):3377-85. PubMed ID: 24782283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global Proteome Profiling of a Marine Copepod and the Mitigating Effect of Ocean Acidification on Mercury Toxicity after Multigenerational Exposure.
    Wang M; Lee JS; Li Y
    Environ Sci Technol; 2017 May; 51(10):5820-5831. PubMed ID: 28414453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-term toxicity tests on the harpacticoid copepod Tisbe battagliai: lethal and reproductive endpoints.
    Diz FR; Araújo CV; Moreno-Garrido I; Hampel M; Blasco J
    Ecotoxicol Environ Saf; 2009 Oct; 72(7):1881-6. PubMed ID: 19362371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acclimation effect and fitness cost of copper resistance in the marine copepod Tigriopus japonicus.
    Kwok KW; Grist EP; Leung KM
    Ecotoxicol Environ Saf; 2009 Feb; 72(2):358-64. PubMed ID: 18842299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Projected near-future ocean acidification decreases mercury toxicity in marine copepods.
    Wang M; Chen J; Lee YH; Lee JS; Wang D
    Environ Pollut; 2021 Sep; 284():117140. PubMed ID: 33930777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A marine secondary producer respires and feeds more in a high CO2 ocean.
    Li W; Gao K
    Mar Pollut Bull; 2012 Apr; 64(4):699-703. PubMed ID: 22364924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of elevated CO2 on the reproduction of two calanoid copepods.
    McConville K; Halsband C; Fileman ES; Somerfield PJ; Findlay HS; Spicer JI
    Mar Pollut Bull; 2013 Aug; 73(2):428-34. PubMed ID: 23490345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multigenerational exposure to ocean acidification during food limitation reveals consequences for copepod scope for growth and vital rates.
    Pedersen SA; Håkedal OJ; Salaberria I; Tagliati A; Gustavson LM; Jenssen BM; Olsen AJ; Altin D
    Environ Sci Technol; 2014 Oct; 48(20):12275-84. PubMed ID: 25225957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of short- and long-term exposures to copper on lethal and reproductive endpoints of the harpacticoid copepod Tigriopus fulvus.
    Biandolino F; Parlapiano I; Faraponova O; Prato E
    Ecotoxicol Environ Saf; 2018 Jan; 147():327-333. PubMed ID: 28858705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CO
    Wei H; Bai Z; Xie D; Chen Y; Wang M
    Mar Pollut Bull; 2021 Dec; 173(Pt B):113145. PubMed ID: 34800761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of the sea urchin Heliocidaris crassispina from Hong Kong is robust to ocean acidification and copper contamination.
    Dorey N; Maboloc E; Chan KYK
    Aquat Toxicol; 2018 Dec; 205():1-10. PubMed ID: 30296660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.