These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
648 related articles for article (PubMed ID: 23951714)
1. A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest. Alvarez-Clare S; Mack MC; Brooks M Ecology; 2013 Jul; 94(7):1540-51. PubMed ID: 23951714 [TBL] [Abstract][Full Text] [Related]
2. Do foliar, litter, and root nitrogen and phosphorus concentrations reflect nutrient limitation in a lowland tropical wet forest? Alvarez-Clare S; Mack MC PLoS One; 2015; 10(4):e0123796. PubMed ID: 25901750 [TBL] [Abstract][Full Text] [Related]
3. Responses of tree growth and biomass production to nutrient addition in a semi-deciduous tropical forest in Africa. Manu R; Corre MD; Aleeje A; Mwanjalolo MJG; Babweteera F; Veldkamp E; van Straaten O Ecology; 2022 Jun; 103(6):e3659. PubMed ID: 35129838 [TBL] [Abstract][Full Text] [Related]
4. Functional traits determine tree growth and ecosystem productivity of a tropical montane forest: Insights from a long-term nutrient manipulation experiment. Báez S; Homeier J Glob Chang Biol; 2018 Jan; 24(1):399-409. PubMed ID: 28921844 [TBL] [Abstract][Full Text] [Related]
5. Plant community responses to stand-level nutrient fertilization in a secondary tropical dry forest. Waring BG; Pérez-Aviles D; Murray JG; Powers JS Ecology; 2019 Jun; 100(6):e02691. PubMed ID: 30989648 [TBL] [Abstract][Full Text] [Related]
6. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Wright SJ; Yavitt JB; Wurzburger N; Turner BL; Tanner EV; Sayer EJ; Santiago LS; Kaspari M; Hedin LO; Harms KE; Garcia MN; Corre MD Ecology; 2011 Aug; 92(8):1616-25. PubMed ID: 21905428 [TBL] [Abstract][Full Text] [Related]
7. Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Cleveland CC; Townsend AR; Taylor P; Alvarez-Clare S; Bustamante MM; Chuyong G; Dobrowski SZ; Grierson P; Harms KE; Houlton BZ; Marklein A; Parton W; Porder S; Reed SC; Sierra CA; Silver WL; Tanner EV; Wieder WR Ecol Lett; 2011 Sep; 14(9):939-47. PubMed ID: 21749602 [TBL] [Abstract][Full Text] [Related]
8. Plant responses to fertilization experiments in lowland, species-rich, tropical forests. Wright SJ; Turner BL; Yavitt JB; Harms KE; Kaspari M; Tanner EVJ; Bujan J; Griffin EA; Mayor JR; Pasquini SC; Sheldrake M; Garcia MN Ecology; 2018 May; 99(5):1129-1138. PubMed ID: 29460277 [TBL] [Abstract][Full Text] [Related]
9. Fine-root responses to fertilization reveal multiple nutrient limitation in a lowland tropical forest. Wurzburger N; Wright SJ Ecology; 2015 Aug; 96(8):2137-46. PubMed ID: 26405739 [TBL] [Abstract][Full Text] [Related]
10. Rapid responses of root traits and productivity to phosphorus and cation additions in a tropical lowland forest in Amazonia. Lugli LF; Rosa JS; Andersen KM; Di Ponzio R; Almeida RV; Pires M; Cordeiro AL; Cunha HFV; Martins NP; Assis RL; Moraes ACM; Souza ST; Aragão LEOC; Camargo JL; Fuchslueger L; Schaap KJ; Valverde-Barrantes OJ; Meir P; Quesada CA; Mercado LM; Hartley IP New Phytol; 2021 Apr; 230(1):116-128. PubMed ID: 33341935 [TBL] [Abstract][Full Text] [Related]
11. Conversion of tropical lowland forest reduces nutrient return through litterfall, and alters nutrient use efficiency and seasonality of net primary production. Kotowska MM; Leuschner C; Triadiati T; Hertel D Oecologia; 2016 Feb; 180(2):601-18. PubMed ID: 26546083 [TBL] [Abstract][Full Text] [Related]
12. Trees adjust nutrient acquisition strategies across tropical forest secondary succession. Wong MY; Wurzburger N; Hall JS; Wright SJ; Tang W; Hedin LO; Saltonstall K; van Breugel M; Batterman SA New Phytol; 2024 Jul; 243(1):132-144. PubMed ID: 38742309 [TBL] [Abstract][Full Text] [Related]
13. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Cleveland CC; Townsend AR Proc Natl Acad Sci U S A; 2006 Jul; 103(27):10316-10321. PubMed ID: 16793925 [TBL] [Abstract][Full Text] [Related]
15. Nutrient limitation on ecosystem productivity and processes of mature and old-growth subtropical forests in China. Hou E; Chen C; McGroddy ME; Wen D PLoS One; 2012; 7(12):e52071. PubMed ID: 23284873 [TBL] [Abstract][Full Text] [Related]
16. Fine root respiration in the mangrove Rhizophora mangle over variation in forest stature and nutrient availability. Lovelock CE; Ruess RW; Feller IC Tree Physiol; 2006 Dec; 26(12):1601-6. PubMed ID: 17169899 [TBL] [Abstract][Full Text] [Related]
17. Nutrient limitation in three lowland tropical forests in southern China receiving high nitrogen deposition: insights from fine root responses to nutrient additions. Zhu F; Yoh M; Gilliam FS; Lu X; Mo J PLoS One; 2013; 8(12):e82661. PubMed ID: 24376562 [TBL] [Abstract][Full Text] [Related]
18. Rain forest nutrient cycling and productivity in response to large-scale litter manipulation. Wood TE; Lawrence D; Clark DA; Chazdon RL Ecology; 2009 Jan; 90(1):109-21. PubMed ID: 19294918 [TBL] [Abstract][Full Text] [Related]
19. Reproductive response to nitrogen and phosphorus fertilization along the Hawaiian archipelago's natural soil fertility gradient. DiManno NM; Ostertag R Oecologia; 2016 Jan; 180(1):245-55. PubMed ID: 26404491 [TBL] [Abstract][Full Text] [Related]