These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 23952068)

  • 1. Spatially resolved mapping of electrical conductivity across individual domain (grain) boundaries in graphene.
    Clark KW; Zhang XG; Vlassiouk IV; He G; Feenstra RM; Li AP
    ACS Nano; 2013 Sep; 7(9):7956-66. PubMed ID: 23952068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polycrystallinity and stacking in CVD graphene.
    Tsen AW; Brown L; Havener RW; Park J
    Acc Chem Res; 2013 Oct; 46(10):2286-96. PubMed ID: 23135386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic and plasmonic phenomena at graphene grain boundaries.
    Fei Z; Rodin AS; Gannett W; Dai S; Regan W; Wagner M; Liu MK; McLeod AS; Dominguez G; Thiemens M; Castro Neto AH; Keilmann F; Zettl A; Hillenbrand R; Fogler MM; Basov DN
    Nat Nanotechnol; 2013 Nov; 8(11):821-5. PubMed ID: 24122082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical vapor deposition of graphene single crystals.
    Yan Z; Peng Z; Tour JM
    Acc Chem Res; 2014 Apr; 47(4):1327-37. PubMed ID: 24527957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic-scale mapping of thermoelectric power on graphene: role of defects and boundaries.
    Park J; He G; Feenstra RM; Li AP
    Nano Lett; 2013 Jul; 13(7):3269-73. PubMed ID: 23731127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasi-periodic nanoripples in graphene grown by chemical vapor deposition and its impact on charge transport.
    Ni GX; Zheng Y; Bae S; Kim HR; Pachoud A; Kim YS; Tan CL; Im D; Ahn JH; Hong BH; Ozyilmaz B
    ACS Nano; 2012 Feb; 6(2):1158-64. PubMed ID: 22251076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The physics of epitaxial graphene on SiC(0001).
    Kageshima H; Hibino H; Tanabe S
    J Phys Condens Matter; 2012 Aug; 24(31):314215. PubMed ID: 22820985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wafer-scale single-domain-like graphene by defect-selective atomic layer deposition of hexagonal ZnO.
    Park KS; Kim S; Kim H; Kwon D; Lee YE; Min SW; Im S; Choi HJ; Lim S; Shin H; Koo SM; Sung MM
    Nanoscale; 2015 Nov; 7(42):17702-9. PubMed ID: 26452020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Domain (grain) boundaries and evidence of "twinlike" structures in chemically vapor deposited grown graphene.
    An J; Voelkl E; Suk JW; Li X; Magnuson CW; Fu L; Tiemeijer P; Bischoff M; Freitag B; Popova E; Ruoff RS
    ACS Nano; 2011 Apr; 5(4):2433-9. PubMed ID: 21361332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale investigation of charge transport at the grain boundaries and wrinkles in graphene film.
    Ahmad M; An H; Kim YS; Lee JH; Jung J; Chun SH; Seo Y
    Nanotechnology; 2012 Jul; 23(28):285705. PubMed ID: 22728533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-optical technique to correlate defect structure and carrier transport in transferred graphene films.
    Rochford C; Kumar N; Liu J; Zhao H; Wu J
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7176-80. PubMed ID: 23855775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides.
    Ly TH; Chiu MH; Li MY; Zhao J; Perello DJ; Cichocka MO; Oh HM; Chae SH; Jeong HY; Yao F; Li LJ; Lee YH
    ACS Nano; 2014 Nov; 8(11):11401-8. PubMed ID: 25343242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of thermally-induced changes of Cu grains on domain structure and electrical performance of CVD-grown graphene.
    Wu Y; Hao Y; Fu M; Jiang W; Wu Q; Thrower PA; Piner RD; Ke C; Wu Z; Kang J; Ruoff RS
    Nanoscale; 2016 Jan; 8(2):930-7. PubMed ID: 26660490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman spectroscopic investigation of polycrystalline structures of CVD-grown graphene by isotope labeling.
    Wang S; Suzuki S; Hibino H
    Nanoscale; 2014 Nov; 6(22):13838-44. PubMed ID: 25303722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman Study of Strain Relaxation from Grain Boundaries in Epitaxial Graphene Grown by Chemical Vapor Deposition on SiC.
    Chong L; Guo H; Zhang Y; Hu Y; Zhang Y
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30841583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition.
    Yu Q; Jauregui LA; Wu W; Colby R; Tian J; Su Z; Cao H; Liu Z; Pandey D; Wei D; Chung TF; Peng P; Guisinger NP; Stach EA; Bao J; Pei SS; Chen YP
    Nat Mater; 2011 Jun; 10(6):443-9. PubMed ID: 21552269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes.
    Wu W; Yu Q; Peng P; Liu Z; Bao J; Pei SS
    Nanotechnology; 2012 Jan; 23(3):035603. PubMed ID: 22173552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization of Grain Structure and Boundaries of Polycrystalline Graphene and Two-Dimensional Materials by Epitaxial Growth of Transition Metal Dichalcogenides.
    Ago H; Fukamachi S; Endo H; Solís-Fernández P; Yunus RM; Uchida Y; Panchal V; Kazakova O; Tsuji M
    ACS Nano; 2016 Mar; 10(3):3233-40. PubMed ID: 26943750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering.
    Ma T; Liu Z; Wen J; Gao Y; Ren X; Chen H; Jin C; Ma XL; Xu N; Cheng HM; Ren W
    Nat Commun; 2017 Feb; 8():14486. PubMed ID: 28205514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rotated domains in chemical vapor deposition-grown monolayer graphene on Cu(111): an angle-resolved photoemission study.
    Jeon C; Hwang HN; Lee WG; Jung YG; Kim KS; Park CY; Hwang CC
    Nanoscale; 2013 Sep; 5(17):8210-4. PubMed ID: 23863869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.