These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 23952147)

  • 1. Mechanistic insights and kinetic analysis for the oxidative hydroxylation of arylboronic acids by visible light photoredox catalysis: a metal-free alternative.
    Pitre SP; McTiernan CD; Ismaili H; Scaiano JC
    J Am Chem Soc; 2013 Sep; 135(36):13286-9. PubMed ID: 23952147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the Kinetics and Spectroscopy of Photoredox Catalysis and Transition-Metal-Free Alternatives.
    Pitre SP; McTiernan CD; Scaiano JC
    Acc Chem Res; 2016 Jun; 49(6):1320-30. PubMed ID: 27023767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient aerobic oxidative hydroxylation of arylboronic acids: photoredox catalysis using visible light.
    Zou YQ; Chen JR; Liu XP; Lu LQ; Davis RL; Jørgensen KA; Xiao WJ
    Angew Chem Int Ed Engl; 2012 Jan; 51(3):784-8. PubMed ID: 22161996
    [No Abstract]   [Full Text] [Related]  

  • 4. The Dual Role of Gold(I) Complexes in Photosensitizer-Free Visible-Light-Mediated Gold-Catalyzed 1,2-Difunctionalization of Alkynes: A DFT Study.
    Liu Y; Yang Y; Zhu R; Liu C; Zhang D
    Chemistry; 2018 Sep; 24(53):14119-14126. PubMed ID: 30052273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visible-light, photoredox catalyzed, oxidative hydroxylation of arylboronic acids using a metal-organic framework containing tetrakis(carboxyphenyl)porphyrin groups.
    Toyao T; Ueno N; Miyahara K; Matsui Y; Kim TH; Horiuchi Y; Ikeda H; Matsuoka M
    Chem Commun (Camb); 2015 Nov; 51(89):16103-6. PubMed ID: 26391908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bimetallic Photoredox Catalysis: Visible Light-Promoted Aerobic Hydroxylation of Arylboronic Acids with a Dirhodium(II) Catalyst.
    Yang HM; Liu ML; Tu JW; Miura-Stempel E; Campbell MG; Chuang GJ
    J Org Chem; 2020 Feb; 85(4):2040-2047. PubMed ID: 31886669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concentration-dependent aggregation of methylene blue acting as a photoredox catalyst.
    Thompson BJ; Kumar A; Huxter VM
    Phys Chem Chem Phys; 2024 Jul; 26(29):19900-19907. PubMed ID: 38990130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-Free, room-temperature, radical alkoxycarbonylation of aryldiazonium salts through visible-light photoredox catalysis.
    Guo W; Lu LQ; Wang Y; Wang YN; Chen JR; Xiao WJ
    Angew Chem Int Ed Engl; 2015 Feb; 54(7):2265-9. PubMed ID: 25504666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of photocatalyst excited state lifetime on the rate of photoredox catalysis.
    Ochola JR; Wolf MO
    Org Biomol Chem; 2016 Sep; 14(38):9088-9092. PubMed ID: 27714220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-Substituted 3(10H)-Acridones as Visible-Light, Water-Soluble Photocatalysts: Aerobic Oxidative Hydroxylation of Arylboronic Acids.
    Xie HY; Han LS; Huang S; Lei X; Cheng Y; Zhao W; Sun H; Wen X; Xu QL
    J Org Chem; 2017 May; 82(10):5236-5241. PubMed ID: 28441486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linker-Assisted CdS-TiO
    Castro-Godoy WD; Schmidt LC; Flores-Oña D; Pérez-Prieto J; Galian RE; Argüello JE
    J Org Chem; 2023 May; 88(10):6489-6497. PubMed ID: 36930860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New photocatalysts based on MIL-53 metal-organic frameworks for the decolorization of methylene blue dye.
    Du JJ; Yuan YP; Sun JX; Peng FM; Jiang X; Qiu LG; Xie AJ; Shen YH; Zhu JF
    J Hazard Mater; 2011 Jun; 190(1-3):945-51. PubMed ID: 21531507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible-Light Photoredox Borylation of Aryl Halides and Subsequent Aerobic Oxidative Hydroxylation.
    Jiang M; Yang H; Fu H
    Org Lett; 2016 Oct; 18(20):5248-5251. PubMed ID: 27690142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation, characterization and activity evaluation of p-n junction photocatalyst p-CaFe2O4/n-Ag3VO4 under visible light irradiation.
    Shifu C; Wei Z; Wei L; Huaye Z; Xiaoling Y; Yinghao C
    J Hazard Mater; 2009 Dec; 172(2-3):1415-23. PubMed ID: 19709814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocatalytic Dehydrogenative Lactonization of 2-Arylbenzoic Acids.
    Ramirez NP; Bosque I; Gonzalez-Gomez JC
    Org Lett; 2015 Sep; 17(18):4550-3. PubMed ID: 26323040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly efficient synthesis of phenols by copper-catalyzed oxidative hydroxylation of arylboronic acids at room temperature in water.
    Xu J; Wang X; Shao C; Su D; Cheng G; Hu Y
    Org Lett; 2010 May; 12(9):1964-7. PubMed ID: 20377271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic Insight into the Light-Triggered CuAAC Reaction: Does Any of the Photocatalyst Go?
    Martínez-Haya R; Heredia AA; Castro-Godoy WD; Schmidt LC; Marin ML; Argüello JE
    J Org Chem; 2021 Apr; 86(8):5832-5844. PubMed ID: 33825466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micellar system in copper-catalysed hydroxylation of arylboronic acids: facile access to phenols.
    Inamoto K; Nozawa K; Yonemoto M; Kondo Y
    Chem Commun (Camb); 2011 Nov; 47(42):11775-7. PubMed ID: 21959336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anthraquinone-Modified Silica Nanoparticles as Heterogeneous Photocatalyst for the Oxidative Hydroxylation of Arylboronic Acids.
    Guadalupe Martin M; Lázaro-Martínez JM; Martín SE; Uberman PM; Budén ME
    Chemistry; 2024 Mar; 30(13):e202303382. PubMed ID: 38150600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noble-metal-free carbon nanotube-Cd0.1Zn0.9S composites for high visible-light photocatalytic H2-production performance.
    Yu J; Yang B; Cheng B
    Nanoscale; 2012 Apr; 4(8):2670-7. PubMed ID: 22422167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.