These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 23952415)

  • 1. Planck distribution of phonons in a Bose-Einstein condensate.
    Schley R; Berkovitz A; Rinott S; Shammass I; Blumkin A; Steinhauer J
    Phys Rev Lett; 2013 Aug; 111(5):055301. PubMed ID: 23952415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Driving Bose-Einstein-condensate vorticity with a rotating normal cloud.
    Haljan PC; Coddington I; Engels P; Cornell EA
    Phys Rev Lett; 2001 Nov; 87(21):210403. PubMed ID: 11736325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of collapsing and exploding Bose-Einstein condensates.
    Donley EA; Claussen NR; Cornish SL; Roberts JL; Cornell EA; Wieman CE
    Nature; 2001 Jul; 412(6844):295-9. PubMed ID: 11460153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping.
    Demokritov SO; Demidov VE; Dzyapko O; Melkov GA; Serga AA; Hillebrands B; Slavin AN
    Nature; 2006 Sep; 443(7110):430-3. PubMed ID: 17006509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High sensitivity phonon spectroscopy of Bose-Einstein condensates using matter-wave interference.
    Katz N; Ozeri R; Steinhauer J; Davidson N; Tozzo C; Dalfovo F
    Phys Rev Lett; 2004 Nov; 93(22):220403. PubMed ID: 15601071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gibbons-Hawking effect in the sonic de Sitter space-time of an expanding Bose-Einstein-condensed gas.
    Fedichev PO; Fischer UR
    Phys Rev Lett; 2003 Dec; 91(24):240407. PubMed ID: 14683099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonequilibrium field theory description of the Bose-Einstein condensate.
    Barci DG; Fraga ES; Ramos RO
    Phys Rev Lett; 2000 Jul; 85(3):479-82. PubMed ID: 10991320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Half-Quantum Vortices in an Antiferromagnetic Spinor Bose-Einstein Condensate.
    Seo SW; Kang S; Kwon WJ; Shin YI
    Phys Rev Lett; 2015 Jul; 115(1):015301. PubMed ID: 26182102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phonon dispersion relation of an atomic Bose-Einstein condensate.
    Shammass I; Rinott S; Berkovitz A; Schley R; Steinhauer J
    Phys Rev Lett; 2012 Nov; 109(19):195301. PubMed ID: 23215394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of Atom Number Fluctuations in a Bose-Einstein Condensate.
    Kristensen MA; Christensen MB; Gajdacz M; Iglicki M; Pawłowski K; Klempt C; Sherson JF; Rzążewski K; Hilliard AJ; Arlt JJ
    Phys Rev Lett; 2019 Apr; 122(16):163601. PubMed ID: 31075024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of Bose-Einstein condensates of excitons in a bulk semiconductor.
    Morita Y; Yoshioka K; Kuwata-Gonokami M
    Nat Commun; 2022 Sep; 13(1):5388. PubMed ID: 36104375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-order quantum resonances observed in a periodically kicked Bose-Einstein condensate.
    Ryu C; Andersen MF; Vaziri A; d'Arcy MB; Grossman JM; Helmerson K; Phillips WD
    Phys Rev Lett; 2006 Apr; 96(16):160403. PubMed ID: 16712208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluctuation-Dissipation Relation for a Bose-Einstein Condensate of Photons.
    Öztürk FE; Vewinger F; Weitz M; Schmitt J
    Phys Rev Lett; 2023 Jan; 130(3):033602. PubMed ID: 36763390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skyrmions in a ferromagnetic Bose-Einstein condensate.
    Al Khawaja U; Stoof H
    Nature; 2001 Jun; 411(6840):918-20. PubMed ID: 11418849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bose-Einstein condensation of photons in an optical microcavity.
    Klaers J; Schmitt J; Vewinger F; Weitz M
    Nature; 2010 Nov; 468(7323):545-8. PubMed ID: 21107426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction effects on number fluctuations in a Bose-Einstein condensate of light.
    van der Wurff EC; de Leeuw AW; Duine RA; Stoof HT
    Phys Rev Lett; 2014 Sep; 113(13):135301. PubMed ID: 25302898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental observation of the Bogoliubov transformation for a Bose-Eeinstein condensed gas.
    Vogels JM; Xu K; Raman C; Abo-Shaeer JR; Ketterle W
    Phys Rev Lett; 2002 Feb; 88(6):060402. PubMed ID: 11863793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct observation of the phonon energy in a Bose-Einstein condensate by tomographic imaging.
    Ozeri R; Steinhauer J; Katz N; Davidson N
    Phys Rev Lett; 2002 Jun; 88(22):220401. PubMed ID: 12059409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation of grand-canonical number statistics in a photon Bose-Einstein condensate.
    Schmitt J; Damm T; Dung D; Vewinger F; Klaers J; Weitz M
    Phys Rev Lett; 2014 Jan; 112(3):030401. PubMed ID: 24484122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct observation of quantum phonon fluctuations in a one-dimensional Bose gas.
    Armijo J
    Phys Rev Lett; 2012 Jun; 108(22):225306. PubMed ID: 23003615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.