These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 23952528)

  • 1. Hyper-elastic modelling of intervertebral disc polyurethane implant.
    Pawlikowski M; Skalski K; Sowiński T
    Acta Bioeng Biomech; 2013; 15(2):43-50. PubMed ID: 23952528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element analysis of artificial disc with an elastomeric core in the lumbar spine.
    Borkowski P; Marek P; Krzesiński G; Ryszkowska J; Waśniewski B; Wymysłowski P; Zagrajek T
    Acta Bioeng Biomech; 2012; 14(1):59-66. PubMed ID: 22742703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study on the mechanical behavior of intervertebral disc using hyperelastic finite element model.
    Xie F; Zhou H; Zhao W; Huang L
    Technol Health Care; 2017 Jul; 25(S1):177-187. PubMed ID: 28582905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Biomechanical analysis of artificial intervertebral disc in a 3-dimensional finite-element model].
    Ge L; Li KH
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2008 Nov; 33(11):1041-6. PubMed ID: 19060373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What have we learned from finite element model studies of lumbar intervertebral discs in the past four decades?
    Schmidt H; Galbusera F; Rohlmann A; Shirazi-Adl A
    J Biomech; 2013 Sep; 46(14):2342-55. PubMed ID: 23962527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical behaviour of annulus fibrosus tissue: identification of a poro-hyper-elastic model from experimental measurements.
    Baldit A; Ambard D; Cherblanc F; Royer P
    Comput Methods Biomech Biomed Engin; 2013; 16 Suppl 1():280-1. PubMed ID: 23923942
    [No Abstract]   [Full Text] [Related]  

  • 8. Osmoviscoelastic finite element model of the intervertebral disc.
    Schroeder Y; Wilson W; Huyghe JM; Baaijens FP
    Eur Spine J; 2006 Aug; 15 Suppl 3(Suppl 3):S361-71. PubMed ID: 16724211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical implementation of an osmo-poro-visco-hyperelastic finite element solver: application to the intervertebral disc.
    Castro APG; Alves JL
    Comput Methods Biomech Biomed Engin; 2021 Apr; 24(5):538-550. PubMed ID: 33111576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element study of human lumbar disc nucleus replacements.
    Schmidt H; Bashkuev M; Galbusera F; Wilke HJ; Shirazi-Adl A
    Comput Methods Biomech Biomed Engin; 2014; 17(16):1762-76. PubMed ID: 23477684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear modeling and dynamic analysis of bioengineering hyper-elastic tubes based on different material models.
    Mirjavadi SS; Forsat M; Badnava S
    Biomech Model Mechanobiol; 2020 Jun; 19(3):971-983. PubMed ID: 31848845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element investigation of the intervertebral disc behaviour.
    Aour B; Damba N
    Comput Methods Biomech Biomed Engin; 2014; 17 Suppl 1():58-9. PubMed ID: 25074163
    [No Abstract]   [Full Text] [Related]  

  • 13. A meta-model analysis of a finite element simulation for defining poroelastic properties of intervertebral discs.
    Nikkhoo M; Hsu YC; Haghpanahi M; Parnianpour M; Wang JL
    Proc Inst Mech Eng H; 2013 Jun; 227(6):672-82. PubMed ID: 23636748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite-element modeling of the synthetic intervertebral disc.
    Langrana NA; Lee CK; Yang SW
    Spine (Phila Pa 1976); 1991 Jun; 16(6 Suppl):S245-52. PubMed ID: 1830704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperelastic mechanical behavior of chitosan hydrogels for nucleus pulposus replacement-experimental testing and constitutive modeling.
    Sasson A; Patchornik S; Eliasy R; Robinson D; Haj-Ali R
    J Mech Behav Biomed Mater; 2012 Apr; 8():143-53. PubMed ID: 22402161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress analysis of the interface between cervical vertebrae end plates and the Bryan, Prestige LP, and ProDisc-C cervical disc prostheses: an in vivo image-based finite element study.
    Lin CY; Kang H; Rouleau JP; Hollister SJ; Marca FL
    Spine (Phila Pa 1976); 2009 Jul; 34(15):1554-60. PubMed ID: 19564765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a finite element model of a transtibial socket liner--an initial study.
    Fisher C; Simpson G; Reynolds D
    Biomed Sci Instrum; 1999; 35():39-44. PubMed ID: 11143383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intervertebral disc creep behavior assessment through an open source finite element solver.
    Castro AP; Wilson W; Huyghe JM; Ito K; Alves JL
    J Biomech; 2014 Jan; 47(1):297-301. PubMed ID: 24210477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of load sharing on uncovertebral and facet joints at the C5-6 level with implantation of the Bryan, Prestige LP, or ProDisc-C cervical disc prosthesis: an in vivo image-based finite element study.
    Kang H; Park P; La Marca F; Hollister SJ; Lin CY
    Neurosurg Focus; 2010 Jun; 28(6):E9. PubMed ID: 20568924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of brain deformations and risk of traumatic brain injury due to closed-head impact: quantitative analysis of the effects of boundary conditions and brain tissue constitutive model.
    Wang F; Han Y; Wang B; Peng Q; Huang X; Miller K; Wittek A
    Biomech Model Mechanobiol; 2018 Aug; 17(4):1165-1185. PubMed ID: 29754317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.