These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 23952528)

  • 21. Mechanical characterisation of polyurethane elastomer for biomedical applications.
    Kanyanta V; Ivankovic A
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):51-62. PubMed ID: 19878902
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Statistical factorial analysis approach for parameter calibration on material nonlinearity of intervertebral disc finite element model.
    Masni-Azian ; Tanaka M
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(10):1066-1076. PubMed ID: 28532164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A visco-hyperelastic constitutive approach for modeling polyvinyl alcohol sponge.
    Karimi A; Navidbakhsh M; Beigzadeh B
    Tissue Cell; 2014 Feb; 46(1):97-102. PubMed ID: 24405852
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of the polynomial chaos expansion to approximate the homogenised response of the intervertebral disc.
    Karajan N; Otto D; Oladyshkin S; Ehlers W
    Biomech Model Mechanobiol; 2014 Oct; 13(5):1065-80. PubMed ID: 24553971
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of four methods to simulate swelling in poroelastic finite element models of intervertebral discs.
    Galbusera F; Schmidt H; Noailly J; Malandrino A; Lacroix D; Wilke HJ; Shirazi-Adl A
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1234-41. PubMed ID: 21783132
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomechanical response of a novel intervertebral disc prosthesis using functionally graded polymers: A finite element study.
    Jiang Q; Zaïri F; Fréderix C; Yan Z; Derrouiche A; Qu Z; Liu X; Zaïri F
    J Mech Behav Biomed Mater; 2019 Jun; 94():288-297. PubMed ID: 30933837
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gradient composite materials for artificial intervertebral discs.
    Migacz K; Chłopek J; Morawska-Chochół A; Ambroziak M
    Acta Bioeng Biomech; 2014; 16(3):3-12. PubMed ID: 25306938
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Finite element simulation of an artificial intervertebral disk using fiber reinforced laminated composite model.
    Shahmohammadi M; Asgharzadeh Shirazi H; Karimi A; Navidbakhsh M
    Tissue Cell; 2014 Oct; 46(5):299-303. PubMed ID: 24981720
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis.
    Chung SK; Kim YE; Wang KC
    Spine (Phila Pa 1976); 2009 May; 34(12):1281-6. PubMed ID: 19455003
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a prosthetic intervertebral disc.
    Lee CK; Langrana NA; Parsons JR; Zimmerman MC
    Spine (Phila Pa 1976); 1991 Jun; 16(6 Suppl):S253-5. PubMed ID: 1862420
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of spacer diameter of the Dynesys dynamic stabilization system on the biomechanics of the lumbar spine: a finite element analysis.
    Shih SL; Chen CS; Lin HM; Huang LY; Liu CL; Huang CH; Cheng CK
    J Spinal Disord Tech; 2012 Jul; 25(5):E140-9. PubMed ID: 22744611
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In situ contact analysis of the prosthesis components of Prodisc-L in lumbar spine following total disc replacement.
    Chen WM; Park C; Lee K; Lee S
    Spine (Phila Pa 1976); 2009 Sep; 34(20):E716-23. PubMed ID: 19752690
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wear simulation of the ProDisc-L disc replacement using adaptive finite element analysis.
    Rawlinson JJ; Punga KP; Gunsallus KL; Bartel DL; Wright TM
    J Neurosurg Spine; 2007 Aug; 7(2):165-73. PubMed ID: 17688056
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isotropic incompressible hyperelastic models for modelling the mechanical behaviour of biological tissues: a review.
    Wex C; Arndt S; Stoll A; Bruns C; Kupriyanova Y
    Biomed Tech (Berl); 2015 Dec; 60(6):577-92. PubMed ID: 26087063
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomechanics of a posture-controlling cervical artificial disc: mechanical, in vitro, and finite-element analysis.
    Crawford NR; Arnett JD; Butters JA; Ferrara LA; Kulkarni N; Goel VK; Duggal N
    Neurosurg Focus; 2010 Jun; 28(6):E11. PubMed ID: 20568917
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intervertebral disc biomechanical analysis using the finite element modeling based on medical images.
    Li H; Wang Z
    Comput Med Imaging Graph; 2006; 30(6-7):363-70. PubMed ID: 17074465
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Finite element application in implant research for treatment of lumbar degenerative disc disease.
    Zhang QH; Teo EC
    Med Eng Phys; 2008 Dec; 30(10):1246-56. PubMed ID: 18804398
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Materials and design concepts for an intervertebral disc spacer. I. fiber-reinforced composite design.
    Langrana NA; Parsons JR; Lee CK; Vuono-Hawkins M; Yang SW; Alexander H
    J Appl Biomater; 1994; 5(2):125-32. PubMed ID: 10172071
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of different artificial disc kinematics on spine biomechanics.
    Zander T; Rohlmann A; Bergmann G
    Clin Biomech (Bristol, Avon); 2009 Feb; 24(2):135-42. PubMed ID: 19121822
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs.
    Jaramillo HE; Gómez L; García JJ
    Acta Bioeng Biomech; 2015; 17(2):15-24. PubMed ID: 26415632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.