These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 23952551)

  • 1. Hepatotoxic potential of therapeutic oligonucleotides can be predicted from their sequence and modification pattern.
    Hagedorn PH; Yakimov V; Ottosen S; Kammler S; Nielsen NF; Høg AM; Hedtjärn M; Meldgaard M; Møller MR; Orum H; Koch T; Lindow M
    Nucleic Acid Ther; 2013 Oct; 23(5):302-10. PubMed ID: 23952551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preclinical evaluation of the toxicological effects of a novel constrained ethyl modified antisense compound targeting signal transducer and activator of transcription 3 in mice and cynomolgus monkeys.
    Burel SA; Han SR; Lee HS; Norris DA; Lee BS; Machemer T; Park SY; Zhou T; He G; Kim Y; MacLeod AR; Monia BP; Lio S; Kim TW; Henry SP
    Nucleic Acid Ther; 2013 Jun; 23(3):213-27. PubMed ID: 23692080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts.
    Burel SA; Hart CE; Cauntay P; Hsiao J; Machemer T; Katz M; Watt A; Bui HH; Younis H; Sabripour M; Freier SM; Hung G; Dan A; Prakash TP; Seth PP; Swayze EE; Bennett CF; Crooke ST; Henry SP
    Nucleic Acids Res; 2016 Mar; 44(5):2093-109. PubMed ID: 26553810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides.
    Kasuya T; Hori S; Watanabe A; Nakajima M; Gahara Y; Rokushima M; Yanagimoto T; Kugimiya A
    Sci Rep; 2016 Jul; 6():30377. PubMed ID: 27461380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence motifs associated with hepatotoxicity of locked nucleic acid--modified antisense oligonucleotides.
    Burdick AD; Sciabola S; Mantena SR; Hollingshead BD; Stanton R; Warneke JA; Zeng M; Martsen E; Medvedev A; Makarov SS; Reed LA; Davis JW; Whiteley LO
    Nucleic Acids Res; 2014 Apr; 42(8):4882-91. PubMed ID: 24550163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of hepatic transcription profiles of locked ribonucleic acid antisense oligonucleotides: evidence of distinct pathways contributing to non-target mediated toxicity in mice.
    Kakiuchi-Kiyota S; Koza-Taylor PH; Mantena SR; Nelms LF; Enayetallah AE; Hollingshead BD; Burdick AD; Reed LA; Warneke JA; Whiteley LO; Ryan AM; Mathialagan N
    Toxicol Sci; 2014 Mar; 138(1):234-48. PubMed ID: 24336348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of C-5 propynyl pyrimidine-containing oligonucleotides in vitro and in vivo.
    Shen L; Siwkowski A; Wancewicz EV; Lesnik E; Butler M; Witchell D; Vasquez G; Ross B; Acevedo O; Inamati G; Sasmor H; Manoharan M; Monia BP
    Antisense Nucleic Acid Drug Dev; 2003; 13(3):129-42. PubMed ID: 12954113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the toxicity of ISIS 2302, a phosphorothioate oligonucleotide, in a 4-week study in CD-1 mice.
    Henry SP; Taylor J; Midgley L; Levin AA; Kornbrust DJ
    Antisense Nucleic Acid Drug Dev; 1997 Oct; 7(5):473-81. PubMed ID: 9361906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA Reduction and Hepatotoxic Potential Caused by Non-Gapmer Antisense Oligonucleotides.
    Hori SI; Mitsuoka Y; Kugimiya A
    Nucleic Acid Ther; 2019 Feb; 29(1):44-50. PubMed ID: 30508397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advantageous toxicity profile of inhaled antisense oligonucleotides following chronic dosing in non-human primates.
    Guimond A; Viau E; Aubé P; Renzi PM; Paquet L; Ferrari N
    Pulm Pharmacol Ther; 2008 Dec; 21(6):845-54. PubMed ID: 18761414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic Toxicity Assessment of 2'-O-Methoxyethyl Antisense Oligonucleotides in Mice.
    Zanardi TA; Kim TW; Shen L; Serota D; Papagiannis C; Park SY; Kim Y; Henry SP
    Nucleic Acid Ther; 2018 Aug; 28(4):233-241. PubMed ID: 29708844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of 2'-O-(2-N-Methylcarbamoylethyl) Nucleotides in RNase H-Dependent Antisense Oligonucleotides.
    Masaki Y; Iriyama Y; Nakajima H; Kuroda Y; Kanaki T; Furukawa S; Sekine M; Seio K
    Nucleic Acid Ther; 2018 Oct; 28(5):307-311. PubMed ID: 30020852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vitro Assessment of the Hepatotoxicity Potential of Therapeutic Oligonucleotides.
    Sewing S; Minz T; Boess F
    Methods Mol Biol; 2019; 2036():249-259. PubMed ID: 31410802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serial incorporation of a monovalent GalNAc phosphoramidite unit into hepatocyte-targeting antisense oligonucleotides.
    Yamamoto T; Sawamura M; Wada F; Harada-Shiba M; Obika S
    Bioorg Med Chem; 2016 Jan; 24(1):26-32. PubMed ID: 26678173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals.
    Swayze EE; Siwkowski AM; Wancewicz EV; Migawa MT; Wyrzykiewicz TK; Hung G; Monia BP; Bennett CF
    Nucleic Acids Res; 2007; 35(2):687-700. PubMed ID: 17182632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antisense oligonucleotides: efficient synthesis of 2'-O-methoxyethyl phosphorothioate oligonucleotides using 4,5-dicyanoimidazole. Are these oligonucleotides comparable to those synthesized using 1H-tetrazole as coupling activator?
    Wang Z; Siwkowski A; Lima WF; Olsen P; Ravikumar VT
    Bioorg Med Chem; 2006 Jul; 14(14):5049-60. PubMed ID: 16563772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Locked nucleic acid antisense inhibitor targeting apolipoprotein C-III efficiently and preferentially removes triglyceride from large very low-density lipoprotein particles in murine plasma.
    Yamamoto T; Obika S; Nakatani M; Yasuhara H; Wada F; Shibata E; Shibata MA; Harada-Shiba M
    Eur J Pharmacol; 2014 Jan; 723():353-9. PubMed ID: 24269597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute hepatotoxicity of 2' fluoro-modified 5-10-5 gapmer phosphorothioate oligonucleotides in mice correlates with intracellular protein binding and the loss of DBHS proteins.
    Shen W; De Hoyos CL; Sun H; Vickers TA; Liang XH; Crooke ST
    Nucleic Acids Res; 2018 Mar; 46(5):2204-2217. PubMed ID: 29390093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of 2'-modified oligonucleotides containing 2'-deoxy gaps as antisense inhibitors of gene expression.
    Monia BP; Lesnik EA; Gonzalez C; Lima WF; McGee D; Guinosso CJ; Kawasaki AM; Cook PD; Freier SM
    J Biol Chem; 1993 Jul; 268(19):14514-22. PubMed ID: 8390996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2'-O-[2-[(N,N-dimethylamino)oxy]ethyl]-modified oligonucleotides inhibit expression of mRNA in vitro and in vivo.
    Prakash TP; Johnston JF; Graham MJ; Condon TP; Manoharan M
    Nucleic Acids Res; 2004; 32(2):828-33. PubMed ID: 14762210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.