BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

541 related articles for article (PubMed ID: 23952971)

  • 1. Core-shell tin oxide, indium oxide, and indium tin oxide nanoparticles on silicon with tunable dispersion: electrochemical and structural characteristics as a hybrid Li-ion battery anode.
    Osiak MJ; Armstrong E; Kennedy T; Torres CM; Ryan KM; O'Dwyer C
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8195-202. PubMed ID: 23952971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly monodispersed tin oxide/mesoporous starbust carbon composite as high-performance Li-ion battery anode.
    Chen J; Yano K
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7682-7. PubMed ID: 23947639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene/Fe2O3/SnO2 ternary nanocomposites as a high-performance anode for lithium ion batteries.
    Xia G; Li N; Li D; Liu R; Wang C; Li Q; Lü X; Spendelow JS; Zhang J; Wu G
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8607-14. PubMed ID: 23947768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries.
    Lin J; Peng Z; Xiang C; Ruan G; Yan Z; Natelson D; Tour JM
    ACS Nano; 2013 Jul; 7(7):6001-6. PubMed ID: 23758123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interface chemistry engineering of protein-directed SnO₂ nanocrystal-based anode for lithium-ion batteries with improved performance.
    Wang L; Wang D; Dong Z; Zhang F; Jin J
    Small; 2014 Mar; 10(5):998-1007. PubMed ID: 24170365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesoporous SnO2@carbon core-shell nanostructures with superior electrochemical performance for lithium ion batteries.
    Chen LB; Yin XM; Mei L; Li CC; Lei DN; Zhang M; Li QH; Xu Z; Xu CM; Wang TH
    Nanotechnology; 2012 Jan; 23(3):035402. PubMed ID: 22173372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced lithium storage in Fe2O3-SnO2-C nanocomposite anode with a breathable structure.
    Rahman MM; Glushenkov AM; Ramireddy T; Tao T; Chen Y
    Nanoscale; 2013 Jun; 5(11):4910-6. PubMed ID: 23624706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen-Doped Carbon-Encapsulated SnO2@Sn Nanoparticles Uniformly Grafted on Three-Dimensional Graphene-like Networks as Anode for High-Performance Lithium-Ion Batteries.
    Li Y; Zhang H; Chen Y; Shi Z; Cao X; Guo Z; Shen PK
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):197-207. PubMed ID: 26654790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The application of catalyst-recovered SnO2 as an anode material for lithium secondary batteries.
    Ryu DJ; Jung HW; Lee SH; Park DJ; Ryu KS
    Environ Sci Pollut Res Int; 2016 Aug; 23(15):15015-22. PubMed ID: 27083904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fast filling of nano-SnO2 in CNTs by vacuum absorption: a new approach to realize cyclic durable anodes for lithium ion batteries.
    Hu R; Sun W; Liu H; Zeng M; Zhu M
    Nanoscale; 2013 Dec; 5(23):11971-9. PubMed ID: 24136654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controllable synthesis of SnO2@C yolk-shell nanospheres as a high-performance anode material for lithium ion batteries.
    Wang J; Li W; Wang F; Xia Y; Asiri AM; Zhao D
    Nanoscale; 2014 Mar; 6(6):3217-22. PubMed ID: 24500178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinspired Carbon/SnO2 Composite Anodes Prepared from a Photonic Hierarchical Structure for Lithium Batteries.
    Li Y; Meng Q; Ma J; Zhu C; Cui J; Chen Z; Guo Z; Zhang T; Zhu S; Zhang D
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11146-54. PubMed ID: 25939407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Four-layer tin-carbon nanotube yolk-shell materials for high-performance lithium-ion batteries.
    Chen P; Wu F; Wang Y
    ChemSusChem; 2014 May; 7(5):1407-14. PubMed ID: 24648261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes.
    Wang W; Kumta PN
    ACS Nano; 2010 Apr; 4(4):2233-41. PubMed ID: 20364846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode.
    Chang J; Huang X; Zhou G; Cui S; Hallac PB; Jiang J; Hurley PT; Chen J
    Adv Mater; 2014 Feb; 26(5):758-64. PubMed ID: 24115353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon/SnO2/carbon core/shell/shell hybrid nanofibers: tailored nanostructure for the anode of lithium ion batteries with high reversibility and rate capacity.
    Kong J; Liu Z; Yang Z; Tan HR; Xiong S; Wong SY; Li X; Lu X
    Nanoscale; 2012 Jan; 4(2):525-30. PubMed ID: 22127410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Layer-by-layer synthesis of γ-Fe2O3@SnO2@C porous core-shell nanorods with high reversible capacity in lithium-ion batteries.
    Du N; Chen Y; Zhai C; Zhang H; Yang D
    Nanoscale; 2013 Jun; 5(11):4744-50. PubMed ID: 23599163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ formed Si nanoparticle network with micron-sized Si particles for lithium-ion battery anodes.
    Wu M; Sabisch JE; Song X; Minor AM; Battaglia VS; Liu G
    Nano Lett; 2013; 13(11):5397-402. PubMed ID: 24079331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Encapsulation of TiO₂(B) nanowire cores into SnO₂/carbon nanoparticle shells and their high performance in lithium storage.
    Yang Z; Du G; Guo Z; Yu X; Chen Z; Guo T; Zeng R
    Nanoscale; 2011 Oct; 3(10):4440-7. PubMed ID: 21927742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly of tin oxide/graphene nanosheets into 3D hierarchical frameworks for high-performance lithium storage.
    Huang Y; Wu D; Han S; Li S; Xiao L; Zhang F; Feng X
    ChemSusChem; 2013 Aug; 6(8):1510-5. PubMed ID: 23784753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.