These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 23953433)
1. A facile label-free electrochemiluminescence biosensor for target protein specific recognition based on the controlled-release delivery system. Yang X; Wang A; Liu J Talanta; 2013 Sep; 114():5-10. PubMed ID: 23953433 [TBL] [Abstract][Full Text] [Related]
2. [Ru(bpy)2dppz]2+ electrochemiluminescence switch and its applications for DNA interaction study and label-free ATP aptasensor. Hu L; Bian Z; Li H; Han S; Yuan Y; Gao L; Xu G Anal Chem; 2009 Dec; 81(23):9807-11. PubMed ID: 19891459 [TBL] [Abstract][Full Text] [Related]
3. A signal-on electrochemiluminescence aptamer biosensor for the detection of ultratrace thrombin based on junction-probe. Zhang J; Chen P; Wu X; Chen J; Xu L; Chen G; Fu F Biosens Bioelectron; 2011 Jan; 26(5):2645-50. PubMed ID: 21146976 [TBL] [Abstract][Full Text] [Related]
4. A solid-state electrochemiluminescence biosensing switch for detection of thrombin based on ferrocene-labeled molecular beacon aptamer. Wang X; Dong P; Yun W; Xu Y; He P; Fang Y Biosens Bioelectron; 2009 Jul; 24(11):3288-92. PubMed ID: 19442509 [TBL] [Abstract][Full Text] [Related]
5. ATP-responsive controlled release system using aptamer-functionalized mesoporous silica nanoparticles. He X; Zhao Y; He D; Wang K; Xu F; Tang J Langmuir; 2012 Sep; 28(35):12909-15. PubMed ID: 22889263 [TBL] [Abstract][Full Text] [Related]
6. Signal-on electrochemiluminescence biosensor for thrombin based on target-induced conjunction of split aptamer fragments. Lin Z; Chen L; Zhu X; Qiu B; Chen G Chem Commun (Camb); 2010 Aug; 46(30):5563-5. PubMed ID: 20532276 [TBL] [Abstract][Full Text] [Related]
7. DNA aptamer-based QDs electrochemiluminescence biosensor for the detection of thrombin. Huang H; Zhu JJ Biosens Bioelectron; 2009 Dec; 25(4):927-30. PubMed ID: 19747817 [TBL] [Abstract][Full Text] [Related]
8. Label-free sensitive electrogenerated chemiluminescence aptasensing based on chitosan/Ru(bpy)₃²⁺/silica nanoparticles modified electrode. Dang J; Guo Z; Zheng X Anal Chem; 2014 Sep; 86(18):8943-50. PubMed ID: 25142310 [TBL] [Abstract][Full Text] [Related]
9. 4-(dimethylamino)butyric acid@PtNPs as enhancer for solid-state electrochemiluminescence aptasensor based on target-induced strand displacement. Gan X; Yuan R; Chai Y; Yuan Y; Mao L; Cao Y; Liao Y Biosens Bioelectron; 2012 Apr; 34(1):25-9. PubMed ID: 22387036 [TBL] [Abstract][Full Text] [Related]
10. A sensitive aptasensor for adenosine based on the quenching of Ru(bpy)(3)(2+)-doped silica nanoparticle ECL by ferrocene. Chen L; Cai Q; Luo F; Chen X; Zhu X; Qiu B; Lin Z; Chen G Chem Commun (Camb); 2010 Nov; 46(41):7751-3. PubMed ID: 20852786 [TBL] [Abstract][Full Text] [Related]
11. Label-free electrochemiluminescence detection of specific-sequence DNA based on DNA probes capped ion nanochannels. Xiong H; Zheng X Analyst; 2014 Apr; 139(7):1732-9. PubMed ID: 24527488 [TBL] [Abstract][Full Text] [Related]
12. Electrochemiluminescence biosensor for the assay of small molecule and protein based on bifunctional aptamer and chemiluminescent functionalized gold nanoparticles. Chai Y; Tian D; Cui H Anal Chim Acta; 2012 Feb; 715():86-92. PubMed ID: 22244171 [TBL] [Abstract][Full Text] [Related]
13. In-situ produced ascorbic acid as coreactant for an ultrasensitive solid-state tris(2,2'-bipyridyl) ruthenium(II) electrochemiluminescence aptasensor. Liao Y; Yuan R; Chai Y; Zhuo Y; Yuan Y; Bai L; Mao L; Yuan S Biosens Bioelectron; 2011 Aug; 26(12):4815-8. PubMed ID: 21696941 [TBL] [Abstract][Full Text] [Related]
14. Highly sensitive electrochemiluminescent biosensor for adenosine based on structure-switching of aptamer. Zhu X; Zhang Y; Yang W; Liu Q; Lin Z; Qiu B; Chen G Anal Chim Acta; 2011 Jan; 684(1-2):121-5. PubMed ID: 21167993 [TBL] [Abstract][Full Text] [Related]
15. Stimulus-response click chemistry based aptamer-functionalized mesoporous silica nanoparticles for fluorescence detection of thrombin. Chen Z; Sun M; Luo F; Xu K; Lin Z; Zhang L Talanta; 2018 Feb; 178():563-568. PubMed ID: 29136862 [TBL] [Abstract][Full Text] [Related]
16. Sensitive electrochemiluminescence biosensor based on Au-ITO hybrid bipolar electrode amplification system for cell surface protein detection. Wu MS; Yuan DJ; Xu JJ; Chen HY Anal Chem; 2013 Dec; 85(24):11960-5. PubMed ID: 24215536 [TBL] [Abstract][Full Text] [Related]
17. A label-free electrochemiluminescence aptasensor for thrombin detection based on host-guest recognition between tris(bipyridine)ruthenium(II)-β-cyclodextrin and aptamer. Chen Q; Chen H; Zhao Y; Zhang F; Yang F; Tang J; He P Biosens Bioelectron; 2014 Apr; 54():547-52. PubMed ID: 24321886 [TBL] [Abstract][Full Text] [Related]
18. Signal amplification aptamer biosensor for thrombin based on a glassy carbon electrode modified with graphene, quantum dots and gold nanoparticles. Xie L; You L; Cao X Spectrochim Acta A Mol Biomol Spectrosc; 2013 May; 109():110-5. PubMed ID: 23501724 [TBL] [Abstract][Full Text] [Related]
19. Targeted Intracellular Controlled Drug Delivery and Tumor Therapy through in Situ Forming Ag Nanogates on Mesoporous Silica Nanocontainers. Liu C; Zheng J; Deng L; Ma C; Li J; Li Y; Yang S; Yang J; Wang J; Yang R ACS Appl Mater Interfaces; 2015 Jun; 7(22):11930-8. PubMed ID: 25966745 [TBL] [Abstract][Full Text] [Related]
20. A label-free electrochemiluminescence aptasensor for thrombin based on novel assembly strategy of oligonucleotide and luminol functionalized gold nanoparticles. Li F; Cui H Biosens Bioelectron; 2013 Jan; 39(1):261-7. PubMed ID: 22917918 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]