These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 2395376)

  • 1. A mechanism of formation of protein-free regions in the red cell membrane: the rupture of the membrane skeleton.
    Kozlov MM; Chernomordik LV; Markin VS
    J Theor Biol; 1990 Jun; 144(3):347-65. PubMed ID: 2395376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anatomy of the red cell membrane skeleton: unanswered questions.
    Lux SE
    Blood; 2016 Jan; 127(2):187-99. PubMed ID: 26537302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectrin properties and the elasticity of the red blood cell membrane skeleton.
    Hansen J; Skalak R; Chien S; Hoger A
    Biorheology; 1997; 34(4-5):327-48. PubMed ID: 9578807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel strain energy relationship for red blood cell membrane skeleton based on spectrin stiffness and its application to micropipette deformation.
    Svetina S; Kokot G; Kebe TŠ; Žekš B; Waugh RE
    Biomech Model Mechanobiol; 2016 Jun; 15(3):745-58. PubMed ID: 26376642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular maps of red cell deformation: hidden elasticity and in situ connectivity.
    Discher DE; Mohandas N; Evans EA
    Science; 1994 Nov; 266(5187):1032-5. PubMed ID: 7973655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytoskeleton confinement and tension of red blood cell membranes.
    Gov N; Zilman AG; Safran S
    Phys Rev Lett; 2003 Jun; 90(22):228101. PubMed ID: 12857343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hybrid model for erythrocyte membrane: a single unit of protein network coupled with lipid bilayer.
    Zhu Q; Vera C; Asaro RJ; Sche P; Sung LA
    Biophys J; 2007 Jul; 93(2):386-400. PubMed ID: 17449663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural determinants of the rigidity of the red cell membrane.
    Nash GB; Gratzer WB
    Biorheology; 1993; 30(5-6):397-407. PubMed ID: 8186406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical measurements of bilayer-skeletal separation forces.
    Waugh RE; Bauserman RG
    Ann Biomed Eng; 1995; 23(3):308-21. PubMed ID: 7631984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Actin protofilament orientation in deformation of the erythrocyte membrane skeleton.
    Picart C; Dalhaimer P; Discher DE
    Biophys J; 2000 Dec; 79(6):2987-3000. PubMed ID: 11106606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectrin, human erythrocyte shapes, and mechanochemical properties.
    Stokke BT; Mikkelsen A; Elgsaeter A
    Biophys J; 1986 Jan; 49(1):319-27. PubMed ID: 3955175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of network topology on the elasticity of the red blood cell membrane skeleton.
    Hansen JC; Skalak R; Chien S; Hoger A
    Biophys J; 1997 May; 72(5):2369-81. PubMed ID: 9129841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-dependent elastic extensional RBC deformation by micropipette aspiration: redistribution of the spectrin network?
    Lerche D; Kozlov MM; Meier W
    Eur Biophys J; 1991; 19(6):301-9. PubMed ID: 1915155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane skeleton-bilayer interaction is not the major determinant of membrane phospholipid asymmetry in human erythrocytes.
    Gudi SR; Kumar A; Bhakuni V; Gokhale SM; Gupta CM
    Biochim Biophys Acta; 1990 Mar; 1023(1):63-72. PubMed ID: 2317498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is the surface area of the red cell membrane skeleton locally conserved?
    Fischer TM
    Biophys J; 1992 Feb; 61(2):298-305. PubMed ID: 1547320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model of red blood cell membrane skeleton: electrical and mechanical properties.
    Kozlov MM; Markin VS
    J Theor Biol; 1987 Dec; 129(4):439-52. PubMed ID: 3455470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cooperative role of membrane skeleton and bilayer in the mechanical behaviour of red blood cells.
    Svetina S; Kuzman D; Waugh RE; Ziherl P; Zeks B
    Bioelectrochemistry; 2004 May; 62(2):107-13. PubMed ID: 15039011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An elastic network model based on the structure of the red blood cell membrane skeleton.
    Hansen JC; Skalak R; Chien S; Hoger A
    Biophys J; 1996 Jan; 70(1):146-66. PubMed ID: 8770194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gaps in the erythrocyte membrane skeleton: a stretched net model.
    Saxton MJ
    J Theor Biol; 1992 Apr; 155(4):517-36. PubMed ID: 1619964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of the lipid bilayer from the membrane skeleton during discocyte-echinocyte transformation of human erythrocyte ghosts.
    Liu SC; Derick LH; Duquette MA; Palek J
    Eur J Cell Biol; 1989 Aug; 49(2):358-65. PubMed ID: 2776779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.