These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 23954100)

  • 41. Single-molecule protein unfolding and refolding using atomic force microscopy.
    Bornschlögl T; Rief M
    Methods Mol Biol; 2011; 783():233-50. PubMed ID: 21909892
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biomolecular simulation: a computational microscope for molecular biology.
    Dror RO; Dirks RM; Grossman JP; Xu H; Shaw DE
    Annu Rev Biophys; 2012; 41():429-52. PubMed ID: 22577825
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dynamic disorder can explain non-exponential kinetics of fast protein mechanical unfolding.
    Costescu BI; Sturm S; Gräter F
    J Struct Biol; 2017 Jan; 197(1):43-49. PubMed ID: 27771331
    [TBL] [Abstract][Full Text] [Related]  

  • 44. How to Measure Load-Dependent Kinetics of Individual Motor Molecules Without a Force-Clamp.
    Sung J; Mortensen KI; Spudich JA; Flyvbjerg H
    Methods Enzymol; 2017; 582():1-29. PubMed ID: 28062031
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protein unfolding and refolding under force: methodologies for nanomechanics.
    Samorì B; Zuccheri G; Baschieri R
    Chemphyschem; 2005 Jan; 6(1):29-34. PubMed ID: 15688640
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular dynamics simulations of duplex stretching reveal the importance of entropy in determining the biomechanical properties of DNA.
    Harris SA; Sands ZA; Laughton CA
    Biophys J; 2005 Mar; 88(3):1684-91. PubMed ID: 15626714
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Towards fast, rigorous and efficient conformational sampling of biomolecules: Advances in accelerated molecular dynamics.
    Doshi U; Hamelberg D
    Biochim Biophys Acta; 2015 May; 1850(5):878-888. PubMed ID: 25153688
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interrogating the activities of conformational deformed enzyme by single-molecule fluorescence-magnetic tweezers microscopy.
    Guo Q; He Y; Lu HP
    Proc Natl Acad Sci U S A; 2015 Nov; 112(45):13904-9. PubMed ID: 26512103
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Folding and Domain Interactions of Three Orthologs of Hsp90 Studied by Single-Molecule Force Spectroscopy.
    Jahn M; Tych K; Girstmair H; Steinmaßl M; Hugel T; Buchner J; Rief M
    Structure; 2018 Jan; 26(1):96-105.e4. PubMed ID: 29276035
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Manipulation and Motion of Organelles and Single Molecules in Living Cells.
    Norregaard K; Metzler R; Ritter CM; Berg-Sørensen K; Oddershede LB
    Chem Rev; 2017 Mar; 117(5):4342-4375. PubMed ID: 28156096
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single molecule force spectroscopy using polyproteins.
    Hoffmann T; Dougan L
    Chem Soc Rev; 2012 Jul; 41(14):4781-96. PubMed ID: 22648310
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Combining single-molecule manipulation and single-molecule detection.
    Cordova JC; Das DK; Manning HW; Lang MJ
    Curr Opin Struct Biol; 2014 Oct; 28():142-8. PubMed ID: 25255052
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Probing DNA-DNA Interactions with a Combination of Quadruple-Trap Optical Tweezers and Microfluidics.
    Brouwer I; King GA; Heller I; Biebricher AS; Peterman EJG; Wuite GJL
    Methods Mol Biol; 2017; 1486():275-293. PubMed ID: 27844432
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The complex folding network of single calmodulin molecules.
    Stigler J; Ziegler F; Gieseke A; Gebhardt JC; Rief M
    Science; 2011 Oct; 334(6055):512-6. PubMed ID: 22034433
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Coupled binding-bending-folding: The complex conformational dynamics of protein-DNA binding studied by atomistic molecular dynamics simulations.
    van der Vaart A
    Biochim Biophys Acta; 2015 May; 1850(5):1091-1098. PubMed ID: 25161164
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biophysical approaches promote advances in the understanding of von Willebrand factor processing and function.
    Löf A; Müller JP; Benoit M; Brehm MA
    Adv Biol Regul; 2017 Jan; 63():81-91. PubMed ID: 27717713
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Watching cellular machinery in action, one molecule at a time.
    Monachino E; Spenkelink LM; van Oijen AM
    J Cell Biol; 2017 Jan; 216(1):41-51. PubMed ID: 27979907
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Some practical approaches to treating electrostatic polarization of proteins.
    Ji C; Mei Y
    Acc Chem Res; 2014 Sep; 47(9):2795-803. PubMed ID: 24883956
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High Spatiotemporal-Resolution Magnetic Tweezers: Calibration and Applications for DNA Dynamics.
    Dulin D; Cui TJ; Cnossen J; Docter MW; Lipfert J; Dekker NH
    Biophys J; 2015 Nov; 109(10):2113-25. PubMed ID: 26588570
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Advances in free-energy-based simulations of protein folding and ligand binding.
    Perez A; Morrone JA; Simmerling C; Dill KA
    Curr Opin Struct Biol; 2016 Feb; 36():25-31. PubMed ID: 26773233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.