These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Identification and characterization of the product release steps within the catalytic cycle of protochlorophyllide oxidoreductase. Heyes DJ; Hunter CN Biochemistry; 2004 Jun; 43(25):8265-71. PubMed ID: 15209523 [TBL] [Abstract][Full Text] [Related]
23. NB-protein (BchN-BchB) of dark-operative protochlorophyllide reductase is the catalytic component containing oxygen-tolerant Fe-S clusters. Nomata J; Ogawa T; Kitashima M; Inoue K; Fujita Y FEBS Lett; 2008 Apr; 582(9):1346-50. PubMed ID: 18358835 [TBL] [Abstract][Full Text] [Related]
24. Dual role of the active site 'lid' regions of protochlorophyllide oxidoreductase in photocatalysis and plant development. Zhang S; Godwin ARF; Taylor A; Hardman SJO; Jowitt TA; Johannissen LO; Hay S; Baldock C; Heyes DJ; Scrutton NS FEBS J; 2021 Jan; 288(1):175-189. PubMed ID: 32866986 [TBL] [Abstract][Full Text] [Related]
25. Reconstitution of light-independent protochlorophyllide reductase from purified bchl and BchN-BchB subunits. In vitro confirmation of nitrogenase-like features of a bacteriochlorophyll biosynthesis enzyme. Fujita Y; Bauer CE J Biol Chem; 2000 Aug; 275(31):23583-8. PubMed ID: 10811655 [TBL] [Abstract][Full Text] [Related]
28. The Effect of Two Amino acid Residue Substitutions via RNA Editing on Dark-operative Protochlorophyllide Oxidoreductase in the Black Pine Chloroplasts. Yamamoto H; Kusumi J; Yamakawa H; Fujita Y Sci Rep; 2017 May; 7(1):2377. PubMed ID: 28539650 [TBL] [Abstract][Full Text] [Related]
29. The origin, evolution and diversification of multiple isoforms of light-dependent protochlorophyllide oxidoreductase (LPOR): focus on angiosperms. Gabruk M; Mysliwa-Kurdziel B Biochem J; 2020 Jun; 477(12):2221-2236. PubMed ID: 32568402 [TBL] [Abstract][Full Text] [Related]
30. MGDG, PG and SQDG regulate the activity of light-dependent protochlorophyllide oxidoreductase. Gabruk M; Mysliwa-Kurdziel B; Kruk J Biochem J; 2017 Mar; 474(7):1307-1320. PubMed ID: 28188256 [TBL] [Abstract][Full Text] [Related]
31. Oxygen sensitivity of a nitrogenase-like protochlorophyllide reductase from the cyanobacterium Leptolyngbya boryana. Yamamoto H; Kurumiya S; Ohashi R; Fujita Y Plant Cell Physiol; 2009 Sep; 50(9):1663-73. PubMed ID: 19643808 [TBL] [Abstract][Full Text] [Related]
32. A second nitrogenase-like enzyme for bacteriochlorophyll biosynthesis: reconstitution of chlorophyllide a reductase with purified X-protein (BchX) and YZ-protein (BchY-BchZ) from Rhodobacter capsulatus. Nomata J; Mizoguchi T; Tamiaki H; Fujita Y J Biol Chem; 2006 May; 281(21):15021-8. PubMed ID: 16571720 [TBL] [Abstract][Full Text] [Related]
33. Crystal structures of cyanobacterial light-dependent protochlorophyllide oxidoreductase. Dong CS; Zhang WL; Wang Q; Li YS; Wang X; Zhang M; Liu L Proc Natl Acad Sci U S A; 2020 Apr; 117(15):8455-8461. PubMed ID: 32234783 [TBL] [Abstract][Full Text] [Related]
34. Formation of prolamellar-body-like ultrastructures in etiolated cyanobacterial cells overexpressing light-dependent protochlorophyllide oxidoreductase in Leptolyngbya boryana. Yamamoto H; Kojima-Ando H; Ohki K; Fujita Y J Gen Appl Microbiol; 2020 Jun; 66(2):129-139. PubMed ID: 32238622 [TBL] [Abstract][Full Text] [Related]
35. Transcriptional and post-translational control of chlorophyll biosynthesis by dark-operative protochlorophyllide oxidoreductase in Norway spruce. Stolárik T; Hedtke B; Šantrůček J; Ilík P; Grimm B; Pavlovič A Photosynth Res; 2017 May; 132(2):165-179. PubMed ID: 28229362 [TBL] [Abstract][Full Text] [Related]
36. Differential operation of dual protochlorophyllide reductases for chlorophyll biosynthesis in response to environmental oxygen levels in the cyanobacterium Leptolyngbya boryana. Yamazaki S; Nomata J; Fujita Y Plant Physiol; 2006 Nov; 142(3):911-22. PubMed ID: 17028153 [TBL] [Abstract][Full Text] [Related]
37. bchFNBH bacteriochlorophyll synthesis genes of Rhodobacter capsulatus and identification of the third subunit of light-independent protochlorophyllide reductase in bacteria and plants. Burke DH; Alberti M; Hearst JE J Bacteriol; 1993 Apr; 175(8):2414-22. PubMed ID: 8385667 [TBL] [Abstract][Full Text] [Related]
38. Inhibition of chlorophyll biosynthesis at the protochlorophyllide reduction step results in the parallel depletion of Photosystem I and Photosystem II in the cyanobacterium Synechocystis PCC 6803. Kopečná J; Sobotka R; Komenda J Planta; 2013 Feb; 237(2):497-508. PubMed ID: 23011568 [TBL] [Abstract][Full Text] [Related]
39. A prokaryotic origin for light-dependent chlorophyll biosynthesis of plants. Suzuki JY; Bauer CE Proc Natl Acad Sci U S A; 1995 Apr; 92(9):3749-53. PubMed ID: 7731978 [TBL] [Abstract][Full Text] [Related]
40. Mechanistic reappraisal of early stage photochemistry in the light-driven enzyme protochlorophyllide oxidoreductase. Heyes DJ; Hardman SJ; Mansell D; Gardiner JM; Scrutton NS PLoS One; 2012; 7(9):e45642. PubMed ID: 23049830 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]