These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
49. Characterization of BciB: a ferredoxin-dependent 8-vinyl-protochlorophyllide reductase from the green sulfur bacterium Chloroherpeton thalassium. Saunders AH; Golbeck JH; Bryant DA Biochemistry; 2013 Nov; 52(47):8442-51. PubMed ID: 24151992 [TBL] [Abstract][Full Text] [Related]
50. Cloning of the gene encoding a protochlorophyllide reductase: the physiological significance of the co-existence of light-dependent and -independent protochlorophyllide reduction systems in the cyanobacterium Plectonema boryanum. Fujita Y; Takagi H; Hase T Plant Cell Physiol; 1998 Feb; 39(2):177-85. PubMed ID: 9559561 [TBL] [Abstract][Full Text] [Related]
51. The first catalytic step of the light-driven enzyme protochlorophyllide oxidoreductase proceeds via a charge transfer complex. Heyes DJ; Heathcote P; Rigby SE; Palacios MA; van Grondelle R; Hunter CN J Biol Chem; 2006 Sep; 281(37):26847-53. PubMed ID: 16867988 [TBL] [Abstract][Full Text] [Related]
52. An unexpectedly branched biosynthetic pathway for bacteriochlorophyll b capable of absorbing near-infrared light. Tsukatani Y; Yamamoto H; Harada J; Yoshitomi T; Nomata J; Kasahara M; Mizoguchi T; Fujita Y; Tamiaki H Sci Rep; 2013; 3():1217. PubMed ID: 23386973 [TBL] [Abstract][Full Text] [Related]
53. Single and multi-exciton dynamics in aqueous protochlorophyllide aggregates. Sytina OA; van Stokkum IH; van Grondelle R; Groot ML J Phys Chem A; 2011 Apr; 115(16):3936-46. PubMed ID: 21171640 [TBL] [Abstract][Full Text] [Related]
54. A light-dependent complementation system for analysis of NADPH:protochlorophyllide oxidoreductase: identification and mutagenesis of two conserved residues that are essential for enzyme activity. Wilks HM; Timko MP Proc Natl Acad Sci U S A; 1995 Jan; 92(3):724-8. PubMed ID: 7846042 [TBL] [Abstract][Full Text] [Related]
55. The flexible N-terminus of BchL autoinhibits activity through interaction with its [4Fe-4S] cluster and released upon ATP binding. Corless EI; Saad Imran SM; Watkins MB; Bacik JP; Mattice JR; Patterson A; Danyal K; Soffe M; Kitelinger R; Seefeldt LC; Origanti S; Bennett B; Bothner B; Ando N; Antony E J Biol Chem; 2021; 296():100107. PubMed ID: 33219127 [TBL] [Abstract][Full Text] [Related]
57. Association of protochlorophyllide with the PufQ protein of Rhodobacter capsulatus. Fidai S; Hinchigeri SB; Richards WR Biochem Biophys Res Commun; 1994 May; 200(3):1679-84. PubMed ID: 8185625 [TBL] [Abstract][Full Text] [Related]
58. Altered monovinyl and divinyl protochlorophyllide pools in bchJ mutants of Rhodobacter capsulatus. Possible monovinyl substrate discrimination of light-independent protochlorophyllide reductase. Suzuki JY; Bauer CE J Biol Chem; 1995 Feb; 270(8):3732-40. PubMed ID: 7876113 [TBL] [Abstract][Full Text] [Related]
59. Tyr275 and Lys279 stabilize NADPH within the catalytic site of NADPH:protochlorophyllide oxidoreductase and are involved in the formation of the enzyme photoactive state. Lebedev N; Karginova O; McIvor W; Timko MP Biochemistry; 2001 Oct; 40(42):12562-74. PubMed ID: 11601980 [TBL] [Abstract][Full Text] [Related]
60. Multiple active site residues are important for photochemical efficiency in the light-activated enzyme protochlorophyllide oxidoreductase (POR). Menon BR; Hardman SJ; Scrutton NS; Heyes DJ J Photochem Photobiol B; 2016 Aug; 161():236-43. PubMed ID: 27285815 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]