BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23954619)

  • 1. Possible mechanism of structural transformations induced by StAsp-PSI in lipid membranes.
    Muñoz F; Palomares-Jerez MF; Daleo G; Villalaín J; Guevara MG
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):339-47. PubMed ID: 23954619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cholesterol and membrane phospholipid compositions modulate the leakage capacity of the swaposin domain from a potato aspartic protease (StAsp-PSI).
    Muñoz F; Palomares-Jerez MF; Daleo G; Villalaín J; Guevara MG
    Biochim Biophys Acta; 2011 Dec; 1811(12):1038-44. PubMed ID: 21890000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The swaposin-like domain of potato aspartic protease (StAsp-PSI) exerts antimicrobial activity on plant and human pathogens.
    Muñoz FF; Mendieta JR; Pagano MR; Paggi RA; Daleo GR; Guevara MG
    Peptides; 2010 May; 31(5):777-85. PubMed ID: 20153392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of the Australian tree frog antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with lipid model membranes: differential scanning calorimetric and Fourier transform infrared spectroscopic studies.
    Seto GW; Marwaha S; Kobewka DM; Lewis RN; Separovic F; McElhaney RN
    Biochim Biophys Acta; 2007 Nov; 1768(11):2787-800. PubMed ID: 17825246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein Structure Insights into the Bilayer Interactions of the Saposin-Like Domain of Solanum tuberosum Aspartic Protease.
    Bryksa BC; Yada RY
    Sci Rep; 2017 Dec; 7(1):16911. PubMed ID: 29208977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Penetration of three transmembrane segments of Slc11a1 in lipid bilayers.
    Qi H; Wang Y; Chu H; Wang W; Mao Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Mar; 122():82-92. PubMed ID: 24299979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Negatively charged phospholipids accelerate the membrane fusion activity of the plant-specific insert domain of an aspartic protease.
    Zhao X; Ma X; Dupius JH; Qi R; Tian JJ; Chen J; Ou X; Qian Z; Liang D; Wang P; Yada RY; Wang S
    J Biol Chem; 2022 Jan; 298(1):101430. PubMed ID: 34801553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural effects of the Solanum steroids solasodine, diosgenin and solanine on human erythrocytes and molecular models of eukaryotic membranes.
    Manrique-Moreno M; Londoño-Londoño J; Jemioła-Rzemińska M; Strzałka K; Villena F; Avello M; Suwalsky M
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):266-77. PubMed ID: 23954587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative structure-function characterization of the saposin-like domains from potato, barley, cardoon and Arabidopsis aspartic proteases.
    Bryksa BC; Grahame DA; Yada RY
    Biochim Biophys Acta Biomembr; 2017 May; 1859(5):1008-1018. PubMed ID: 28212860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and orientation study of Ebola fusion peptide inserted in lipid membrane models.
    Agopian A; Castano S
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):117-26. PubMed ID: 24055820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calorimetric and spectroscopic studies of the phase behavior and organization of lipid bilayer model membranes composed of binary mixtures of dimyristoylphosphatidylcholine and dimyristoylphosphatidylglycerol.
    Lewis RN; Zhang YP; McElhaney RN
    Biochim Biophys Acta; 2005 Mar; 1668(2):203-14. PubMed ID: 15737331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid lateral heterogeneity in phosphatidylcholine/phosphatidylserine/diacylglycerol vesicles and its influence on protein kinase C activation.
    Dibble AR; Hinderliter AK; Sando JJ; Biltonen RL
    Biophys J; 1996 Oct; 71(4):1877-90. PubMed ID: 8889163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction study between maltose-modified PPI dendrimers and lipidic model membranes.
    Wrobel D; Appelhans D; Signorelli M; Wiesner B; Fessas D; Scheler U; Voit B; Maly J
    Biochim Biophys Acta; 2015 Jul; 1848(7):1490-501. PubMed ID: 25843678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes.
    Arouri A; Dathe M; Blume A
    Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of alpha-melanocyte stimulating hormone with binary phospholipid membranes: structural changes and relevance of phase behavior.
    Contreras LM; de Almeida RF; Villalaín J; Fedorov A; Prieto M
    Biophys J; 2001 May; 80(5):2273-83. PubMed ID: 11325729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic study of the aggregation and lipid mixing produced by alpha-sarcin on phosphatidylglycerol and phosphatidylserine vesicles: stopped-flow light scattering and fluorescence energy transfer measurements.
    Mancheño JM; Gasset M; Lacadena J; Ramón F; Martínez del Pozo A; Oñaderra M; Gavilanes JG
    Biophys J; 1994 Sep; 67(3):1117-25. PubMed ID: 7811923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of tryptophan-rich cathelicidin antimicrobial peptides with model membranes studied by differential scanning calorimetry.
    Andrushchenko VV; Vogel HJ; Prenner EJ
    Biochim Biophys Acta; 2007 Oct; 1768(10):2447-58. PubMed ID: 17597579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids.
    Maherani B; Arab-Tehrany E; Kheirolomoom A; Geny D; Linder M
    Biochimie; 2013 Nov; 95(11):2018-33. PubMed ID: 23871914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of charged lidocaine on static and dynamic properties of model bio-membranes.
    Yi Z; Nagao M; Bossev DP
    Biophys Chem; 2012 Jan; 160(1):20-7. PubMed ID: 21982983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between beta-Purothionin and dimyristoylphosphatidylglycerol: a (31)P-NMR and infrared spectroscopic study.
    Richard JA; Kelly I; Marion D; Pézolet M; Auger M
    Biophys J; 2002 Oct; 83(4):2074-83. PubMed ID: 12324425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.