BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 23954716)

  • 1. Bioremediation of reject water from anaerobically digested waste water sludge with macroalgae (Ulva lactuca, Chlorophyta).
    Sode S; Bruhn A; Balsby TJS; Larsen MM; Gotfredsen A; Rasmussen MB
    Bioresour Technol; 2013 Oct; 146():426-435. PubMed ID: 23954716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomethanation potential of macroalgae Ulva spp. and Gracilaria spp. and in co-digestion with waste activated sludge.
    Costa JC; Gonçalves PR; Nobre A; Alves MM
    Bioresour Technol; 2012 Jun; 114():320-6. PubMed ID: 22459959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A macroalgae-based biotechnology for water remediation: Simultaneous removal of Cd, Pb and Hg by living Ulva lactuca.
    Henriques B; Rocha LS; Lopes CB; Figueira P; Duarte AC; Vale C; Pardal MA; Pereira E
    J Environ Manage; 2017 Apr; 191():275-289. PubMed ID: 28129560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overcoming organic matter limitation enables high nutrient recovery from sewage sludge reject water in a self-powered microbial nutrient recovery cell.
    El-Qelish M; Mahmoud M
    Sci Total Environ; 2022 Jan; 802():149851. PubMed ID: 34464808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous nutrient removal, optimised CO2 mitigation and biofuel feedstock production by Chlorogonium sp. grown in secondary treated non-sterile saline sewage effluent.
    Lee KY; Ng TW; Li G; An T; Kwan KK; Chan KM; Huang G; Yip HY; Wong PK
    J Hazard Mater; 2015 Oct; 297():241-50. PubMed ID: 25967099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-scale modeling of intensive macroalgae cultivation and marine nitrogen sequestration.
    Zollmann M; Rubinsky B; Liberzon A; Golberg A
    Commun Biol; 2021 Jul; 4(1):848. PubMed ID: 34234264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainable sources of biomass for bioremediation of heavy metals in waste water derived from coal-fired power generation.
    Saunders RJ; Paul NA; Hu Y; de Nys R
    PLoS One; 2012; 7(5):e36470. PubMed ID: 22590550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removing constraints on the biomass production of freshwater macroalgae by manipulating water exchange to manage nutrient flux.
    Cole AJ; de Nys R; Paul NA
    PLoS One; 2014; 9(7):e101284. PubMed ID: 25000501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerobic/anoxic post-treatment of anaerobically digested sewage sludge as an alternative to biological nitrogen removal from reject water.
    Morras M; Dosta J; García-Heras JL
    Bioprocess Biosyst Eng; 2015 May; 38(5):823-31. PubMed ID: 25407727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomass production and nutrient removal by Chlorella sp. as affected by sludge liquor concentration.
    Åkerström AM; Mortensen LM; Rusten B; Gislerød HR
    J Environ Manage; 2014 Nov; 144():118-24. PubMed ID: 24935023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of heavy metals from aqueous solution by nonliving Ulva seaweed as biosorbent.
    Suzuki Y; Kametani T; Maruyama T
    Water Res; 2005 May; 39(9):1803-8. PubMed ID: 15899278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inorganic nitrogen control in wastewater treatment ponds from a fish farm (Orbetello, Italy): denitrification versus Ulva uptake.
    Bartoli M; Nizzoli D; Naldi M; Vezzulli L; Porrello S; Lenzi M; Viaroli P
    Mar Pollut Bull; 2005 Nov; 50(11):1386-97. PubMed ID: 16045942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pretreatment of macroalgae for volatile fatty acid production.
    Pham TN; Um Y; Yoon HH
    Bioresour Technol; 2013 Oct; 146():754-757. PubMed ID: 23942360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study on metal biosorption by two macroalgae in saline waters: single and ternary systems.
    Figueira P; Henriques B; Teixeira A; Lopes CB; Reis AT; Monteiro RJ; Duarte AC; Pardal MA; Pereira E
    Environ Sci Pollut Res Int; 2016 Jun; 23(12):11985-97. PubMed ID: 26961530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seasonal changes in nutrient limitation and nitrate sources in the green macroalga Ulva lactuca at sites with and without green tides in a northeastern Pacific embayment.
    Van Alstyne KL
    Mar Pollut Bull; 2016 Feb; 103(1-2):186-194. PubMed ID: 26725866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From waste water treatment to land management: Conversion of aquatic biomass to biochar for soil amelioration and the fortification of crops with essential trace elements.
    Roberts DA; Paul NA; Cole AJ; de Nys R
    J Environ Manage; 2015 Jul; 157():60-8. PubMed ID: 25881153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous removal of trace elements from contaminated waters by living Ulva lactuca.
    Henriques B; Teixeira A; Figueira P; Reis AT; Almeida J; Vale C; Pereira E
    Sci Total Environ; 2019 Feb; 652():880-888. PubMed ID: 30380494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two strategies for phosphorus removal from reject water of municipal wastewater treatment plant using alum sludge.
    Yang Y; Zhao YQ; Babatunde AO; Kearney P
    Water Sci Technol; 2009; 60(12):3181-8. PubMed ID: 19955642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic biorefinery of Scenedesmus obliquus and Ulva lactuca in poultry manure towards sustainable bioproduct generation.
    Agarwal A; Mhatre A; Pandit R; Lali AM
    Bioresour Technol; 2020 Feb; 297():122462. PubMed ID: 31791920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macroalgae mitigation potential for fish aquaculture effluents: an approach coupling nitrogen uptake and metabolic pathways using Ulva rigida and Enteromorpha clathrata.
    Aníbal J; Madeira HT; Carvalho LF; Esteves E; Veiga-Pires C; Rocha C
    Environ Sci Pollut Res Int; 2014 Dec; 21(23):13324-34. PubMed ID: 24338110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.