BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 23954725)

  • 1. False start: cotranslational protein ubiquitination and cytosolic protein quality control.
    Comyn SA; Chan GT; Mayor T
    J Proteomics; 2014 Apr; 100():92-101. PubMed ID: 23954725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear import factor Srp1 and its associated protein Sts1 couple ribosome-bound nascent polypeptides to proteasomes for cotranslational degradation.
    Ha SW; Ju D; Xie Y
    J Biol Chem; 2014 Jan; 289(5):2701-10. PubMed ID: 24338021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Principles of cotranslational ubiquitination and quality control at the ribosome.
    Duttler S; Pechmann S; Frydman J
    Mol Cell; 2013 May; 50(3):379-93. PubMed ID: 23583075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cotranslational ubiquitination pathway for quality control of misfolded proteins.
    Wang F; Durfee LA; Huibregtse JM
    Mol Cell; 2013 May; 50(3):368-78. PubMed ID: 23583076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. It's not just a phase; ubiquitination in cytosolic protein quality control.
    Baker HA; Bernardini JP
    Biochem Soc Trans; 2021 Feb; 49(1):365-377. PubMed ID: 33634825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ribosome-bound quality control complex: from aberrant peptide clearance to proteostasis maintenance.
    Defenouillère Q; Fromont-Racine M
    Curr Genet; 2017 Dec; 63(6):997-1005. PubMed ID: 28528489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct proteostasis circuits cooperate in nuclear and cytoplasmic protein quality control.
    Samant RS; Livingston CM; Sontag EM; Frydman J
    Nature; 2018 Nov; 563(7731):407-411. PubMed ID: 30429547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deubiquitinase activity is required for the proteasomal degradation of misfolded cytosolic proteins upon heat-stress.
    Fang NN; Zhu M; Rose A; Wu KP; Mayor T
    Nat Commun; 2016 Oct; 7():12907. PubMed ID: 27698423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ribosome-bound quality control complex remains associated to aberrant peptides during their proteasomal targeting and interacts with Tom1 to limit protein aggregation.
    Defenouillère Q; Namane A; Mouaikel J; Jacquier A; Fromont-Racine M
    Mol Biol Cell; 2017 May; 28(9):1165-1176. PubMed ID: 28298488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cotranslational ubiquitination of cystic fibrosis transmembrane conductance regulator in vitro.
    Sato S; Ward CL; Kopito RR
    J Biol Chem; 1998 Mar; 273(13):7189-92. PubMed ID: 9516408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein feature analysis of heat shock induced ubiquitination sites reveals preferential modification site localization.
    Kuechler ER; Rose A; Bolten M; Madero A; Kammoonah S; Colborne S; Gsponer J; Morin GB; Mayor T
    J Proteomics; 2021 May; 239():104182. PubMed ID: 33705978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear Ubiquitin-Proteasome Pathways in Proteostasis Maintenance.
    Franić D; Zubčić K; Boban M
    Biomolecules; 2021 Jan; 11(1):. PubMed ID: 33406777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rqc1 and Ltn1 Prevent C-terminal Alanine-Threonine Tail (CAT-tail)-induced Protein Aggregation by Efficient Recruitment of Cdc48 on Stalled 60S Subunits.
    Defenouillère Q; Zhang E; Namane A; Mouaikel J; Jacquier A; Fromont-Racine M
    J Biol Chem; 2016 Jun; 291(23):12245-53. PubMed ID: 27129255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cooperativity between the Ribosome-Associated Chaperone Ssb/RAC and the Ubiquitin Ligase Ltn1 in Ubiquitination of Nascent Polypeptides.
    Ghosh A; Shcherbik N
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32957466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Type II Hsp40 Sis1 cooperates with Hsp70 and the E3 ligase Ubr1 to promote degradation of terminally misfolded cytosolic protein.
    Summers DW; Wolfe KJ; Ren HY; Cyr DM
    PLoS One; 2013; 8(1):e52099. PubMed ID: 23341891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct types of translation termination generate substrates for ribosome-associated quality control.
    Shcherbik N; Chernova TA; Chernoff YO; Pestov DG
    Nucleic Acids Res; 2016 Aug; 44(14):6840-52. PubMed ID: 27325745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation Signals for Ubiquitin-Proteasome Dependent Cytosolic Protein Quality Control (CytoQC) in Yeast.
    Maurer MJ; Spear ED; Yu AT; Lee EJ; Shahzad S; Michaelis S
    G3 (Bethesda); 2016 Jul; 6(7):1853-66. PubMed ID: 27172186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recurrent background mutations in WHI2 impair proteostasis and degradation of misfolded cytosolic proteins in Saccharomyces cerevisiae.
    Comyn SA; Flibotte S; Mayor T
    Sci Rep; 2017 Jun; 7(1):4183. PubMed ID: 28646136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection and Degradation of Stalled Nascent Chains via Ribosome-Associated Quality Control.
    Sitron CS; Brandman O
    Annu Rev Biochem; 2020 Jun; 89():417-442. PubMed ID: 32569528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How Is the Fidelity of Proteins Ensured in Terms of Both Quality and Quantity at the Endoplasmic Reticulum? Mechanistic Insights into E3 Ubiquitin Ligases.
    Kang JA; Jeon YJ
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33669844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.