These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 23954864)

  • 1. Facile one-pot synthesis of spherical zinc sulfide-carbon nanocomposite powders with superior electrochemical properties as anode materials for Li-ion batteries.
    Jang YS; Kang YC
    Phys Chem Chem Phys; 2013 Oct; 15(39):16437-41. PubMed ID: 23954864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-pot method for synthesizing spherical-like metal sulfide-reduced graphene oxide composite powders with superior electrochemical properties for lithium-ion batteries.
    Park GD; Choi SH; Lee JK; Kang YC
    Chemistry; 2014 Sep; 20(38):12183-9. PubMed ID: 25111441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-Pot Synthesis of CoSex -rGO Composite Powders by Spray Pyrolysis and Their Application as Anode Material for Sodium-Ion Batteries.
    Park GD; Kang YC
    Chemistry; 2016 Mar; 22(12):4140-6. PubMed ID: 26864320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical properties of hollow-structured MnS-carbon nanocomposite powders prepared by a one-pot spray pyrolysis process.
    Lee SM; Lee JK; Kang YC
    Chem Asian J; 2014 Feb; 9(2):590-5. PubMed ID: 24265162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and fabrication of new nanostructured SnO2-carbon composite microspheres for fast and stable lithium storage performance.
    Ko YN; Park SB; Kang YC
    Small; 2014 Aug; 10(16):3240-5. PubMed ID: 24840117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and synthesis of micron-sized spherical aggregates composed of hollow Fe2O3 nanospheres for use in lithium-ion batteries.
    Cho JS; Hong YJ; Lee JH; Kang YC
    Nanoscale; 2015 May; 7(18):8361-7. PubMed ID: 25899089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile synthesis of loaf-like ZnMn₂O₄ nanorods and their excellent performance in Li-ion batteries.
    Bai Z; Fan N; Sun C; Ju Z; Guo C; Yang J; Qian Y
    Nanoscale; 2013 Mar; 5(6):2442-7. PubMed ID: 23403451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries.
    Shen X; Mu D; Chen S; Wu B; Wu F
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3118-25. PubMed ID: 23532681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-pot synthesis of tin-embedded carbon/silica nanocomposites for anode materials in lithium-ion batteries.
    Hwang J; Woo SH; Shim J; Jo C; Lee KT; Lee J
    ACS Nano; 2013 Feb; 7(2):1036-44. PubMed ID: 23316943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnesium anode for chloride ion batteries.
    Zhao X; Li Q; Zhao-Karger Z; Gao P; Fink K; Shen X; Fichtner M
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):10997-1000. PubMed ID: 24999978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-pot facile synthesis of ant-cave-structured metal oxide-carbon microballs by continuous process for use as anode materials in Li-ion batteries.
    Ko YN; Park SB; Jung KY; Kang YC
    Nano Lett; 2013; 13(11):5462-6. PubMed ID: 24144195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A facile one-pot method for synthesis of low-cost iron oxide/activated carbon nanotube electrode materials for lithium-ion batteries.
    Ma J; Yu F; Wen Z; Yang M; Zhou H; Li C; Jin L; Zhou L; Chen L; Yuan Z; Chen J
    Dalton Trans; 2013 Feb; 42(5):1356-9. PubMed ID: 23207979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nickel sulfide/nitrogen-doped graphene composites: phase-controlled synthesis and high performance anode materials for lithium ion batteries.
    Mahmood N; Zhang C; Hou Y
    Small; 2013 Apr; 9(8):1321-8. PubMed ID: 23494938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spherical CoS(2)@carbon core-shell nanoparticles: one-pot synthesis and Li storage property.
    Luo W; Xie Y; Wu C; Zheng F
    Nanotechnology; 2008 Feb; 19(7):075602. PubMed ID: 21817639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interconnected MoO2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries.
    Zhou L; Wu HB; Wang Z; Lou XW
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4853-7. PubMed ID: 22077330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries.
    Zhu X; Zhu Y; Murali S; Stoller MD; Ruoff RS
    ACS Nano; 2011 Apr; 5(4):3333-8. PubMed ID: 21443243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using simple spray pyrolysis to prepare yolk-shell-structured ZnO-Mn3O4 systems with the optimum composition for superior electrochemical properties.
    Choi SH; Kang YC
    Chemistry; 2014 Mar; 20(11):3014-8. PubMed ID: 24532417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-pot synthesis of silicon nanoparticles trapped in ordered mesoporous carbon for use as an anode material in lithium-ion batteries.
    Park J; Kim GP; Nam I; Park S; Yi J
    Nanotechnology; 2013 Jan; 24(2):025602. PubMed ID: 23220858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.