These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 23955102)

  • 1. Hemifield or hemispace: what accounts for the ipsilateral advantages in visually guided aiming?
    Carey DP; Liddle J
    Exp Brain Res; 2013 Oct; 230(3):323-31. PubMed ID: 23955102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemispatial differences in visually guided aiming are neither hemispatial nor visual.
    Carey DP; Otto-de Haart EG
    Neuropsychologia; 2001; 39(9):885-94. PubMed ID: 11516441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The organization of eye and limb movements during unrestricted reaching to targets in contralateral and ipsilateral visual space.
    Fisk JD; Goodale MA
    Exp Brain Res; 1985; 60(1):159-78. PubMed ID: 4043274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaching to ipsilateral or contralateral targets: within-hemisphere visuomotor processing cannot explain hemispatial differences in motor control.
    Carey DP; Hargreaves EL; Goodale MA
    Exp Brain Res; 1996 Dec; 112(3):496-504. PubMed ID: 9007551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Do left hand reaction time advantages depend on localising unpredictable targets?
    Johnstone LT; Carey DP
    Exp Brain Res; 2016 Dec; 234(12):3625-3632. PubMed ID: 27549915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eye-hand coordination during visuomotor adaptation: effects of hemispace and joint coordination.
    Rand MK; Rentsch S
    Exp Brain Res; 2017 Dec; 235(12):3645-3661. PubMed ID: 28900673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manual asymmetries in the directional coding of reaching: further evidence for hemispatial effects and right hemisphere dominance for movement planning.
    Barthélémy S; Boulinguez P
    Exp Brain Res; 2002 Dec; 147(3):305-12. PubMed ID: 12428138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anti-pointing is mediated by a perceptual bias of target location in left and right visual space.
    Heath M; Maraj A; Gradkowski A; Binsted G
    Exp Brain Res; 2009 Jan; 192(2):275-86. PubMed ID: 18982320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in visuomotor control between the upper and lower visual fields.
    Khan MA; Lawrence GP
    Exp Brain Res; 2005 Jul; 164(3):395-8. PubMed ID: 15991032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Left visual field preference for a bimanual grasping task with ecologically valid object sizes.
    Le A; Niemeier M
    Exp Brain Res; 2013 Oct; 230(2):187-96. PubMed ID: 23857170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-field visual motion directly induces an involuntary rapid manual following response.
    Saijo N; Murakami I; Nishida S; Gomi H
    J Neurosci; 2005 May; 25(20):4941-51. PubMed ID: 15901775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manual asymmetries and saccadic eye movements in right-handers during single and reciprocal aiming movements.
    Helsen WF; Starkes JL; Elliott D; Buekers MJ
    Cortex; 1998 Sep; 34(4):513-29. PubMed ID: 9800087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hand, space and attentional asymmetries in goal-directed manual aiming.
    Hodges NJ; Lyons J; Cockell D; Reed A; Elliott D
    Cortex; 1997 Jun; 33(2):251-69. PubMed ID: 9220257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saccades to the seeing visual hemifield in hemidecorticate patients exhibit task-dependent reaction times and hypometria.
    Herter TM; Guitton D
    Exp Brain Res; 2007 Sep; 182(1):11-25. PubMed ID: 17516057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does perception asymmetrically influence motor production in upper and lower visual fields?
    Brownell K; Rolheiser T; Heath M; Binsted G
    Motor Control; 2010 Jan; 14(1):44-58. PubMed ID: 20237402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rightward attentional bias and left hemisphere dominance in a cue-target light detection task in a callosotomy patient.
    Berlucchi G; Aglioti S; Tassinari G
    Neuropsychologia; 1997 Jul; 35(7):941-52. PubMed ID: 9226656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscimol-induced inactivation of monkey frontal eye field: effects on visually and memory-guided saccades.
    Dias EC; Segraves MA
    J Neurophysiol; 1999 May; 81(5):2191-214. PubMed ID: 10322059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crossmodal spatial influences of touch on extrastriate visual areas take current gaze direction into account.
    Macaluso E; Frith CD; Driver J
    Neuron; 2002 May; 34(4):647-58. PubMed ID: 12062047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The antipointing task: vector inversion is supported by a perceptual estimate of visual space.
    Heath M; Maraj A; Maddigan M; Binsted G
    J Mot Behav; 2009 Oct; 41(5):383-92. PubMed ID: 19460747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for subcortical involvement in the visual control of human reaching.
    Day BL; Brown P
    Brain; 2001 Sep; 124(Pt 9):1832-40. PubMed ID: 11522585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.