These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 23955120)

  • 1. Atmospheric photolytic reduction of Hg(ii) in dry aerosols.
    Tong Y; Eichhorst T; Olson MR; McGinnis JE; Turner I; Rutter AP; Shafer MM; Wang X; Schauer JJ
    Environ Sci Process Impacts; 2013 Oct; 15(10):1883-8. PubMed ID: 23955120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance evaluation of non-thermal plasma injection for elemental mercury oxidation in a simulated flue gas.
    An J; Shang K; Lu N; Jiang Y; Wang T; Li J; Wu Y
    J Hazard Mater; 2014 Mar; 268():237-45. PubMed ID: 24513449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive uptake and photo-Fenton oxidation of glycolaldehyde in aerosol liquid water.
    Nguyen TB; Coggon MM; Flagan RC; Seinfeld JH
    Environ Sci Technol; 2013 May; 47(9):4307-16. PubMed ID: 23557515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of inhibition mechanism of NO3- on photoreduction of Hg(II) in artificial water.
    Zhang Y; Sun R; Ma M; Wang D
    Chemosphere; 2012 Apr; 87(2):171-6. PubMed ID: 22209302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced photolysis in aerosols: evidence for important surface effects.
    Nissenson P; Knox CJ; Finlayson-Pitts BJ; Phillips LF; Dabdub D
    Phys Chem Chem Phys; 2006 Oct; 8(40):4700-10. PubMed ID: 17047769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfate formation catalyzed by coal fly ash, mineral dust and iron(iii) oxide: variable influence of temperature and light.
    Gankanda A; Coddens EM; Zhang Y; Cwiertny DM; Grassian VH
    Environ Sci Process Impacts; 2016 Dec; 18(12):1484-1491. PubMed ID: 27796391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chasing quicksilver: modeling the atmospheric lifetime of Hg(0)(g) in the marine boundary layer at various latitudes.
    Hedgecock IM; Pirrone N
    Environ Sci Technol; 2004 Jan; 38(1):69-76. PubMed ID: 14740719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous Reduction Pathways for Hg(II) Species on Dry Aerosols: A First-Principles Computational Study.
    Tacey SA; Xu L; Mavrikakis M; Schauer JJ
    J Phys Chem A; 2016 Apr; 120(13):2106-13. PubMed ID: 27014805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Mechanistic Model of the Atmospheric Redox Chemistry of Mercury.
    Shah V; Jacob DJ; Thackray CP; Wang X; Sunderland EM; Dibble TS; Saiz-Lopez A; Černušák I; Kellö V; Castro PJ; Wu R; Wang C
    Environ Sci Technol; 2021 Nov; 55(21):14445-14456. PubMed ID: 34724789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atmospheric distribution and deposition of mercury in the Idrija Hg mine region, Slovenia.
    Kocman D; Vreča P; Fajon V; Horvat M
    Environ Res; 2011 Jan; 111(1):1-9. PubMed ID: 21112585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LP/LIF study of the formation and consumption of mercury (I) chloride: kinetics of mercury chlorination.
    Taylor PH; Mallipeddi R; Yamada T
    Chemosphere; 2005 Nov; 61(5):685-92. PubMed ID: 15893790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercury photolytic transformation affected by low-molecular-weight natural organics in water.
    He F; Zheng W; Liang L; Gu B
    Sci Total Environ; 2012 Feb; 416():429-35. PubMed ID: 22225824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mercury emission and dispersion models from soils contaminated by cinnabar mining and metallurgy.
    Llanos W; Kocman D; Higueras P; Horvat M
    J Environ Monit; 2011 Dec; 13(12):3460-8. PubMed ID: 22037967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic matrix effects on the formation of light-absorbing compounds from α-dicarbonyls in aqueous salt solution.
    Drozd GT; McNeill VF
    Environ Sci Process Impacts; 2014 Apr; 16(4):741-7. PubMed ID: 24356644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atmospheric mercury speciation in Yellowstone National Park.
    Hall BD; Olson ML; Rutter AP; Frontiera RR; Krabbenhoft DP; Gross DS; Yuen M; Rudolph TM; Schauer JJ
    Sci Total Environ; 2006 Aug; 367(1):354-66. PubMed ID: 16434084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dry deposition of gaseous oxidized mercury in Western Maryland.
    Castro MS; Moore C; Sherwell J; Brooks SB
    Sci Total Environ; 2012 Feb; 417-418():232-40. PubMed ID: 22264922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atmospheric transport of speciated mercury across southern Lake Michigan: Influence from emission sources in the Chicago/Gary urban area.
    Gratz LE; Keeler GJ; Marsik FJ; Barres JA; Dvonch JT
    Sci Total Environ; 2013 Mar; 448():84-95. PubMed ID: 23010282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun metal oxide-TiO2 nanofibers for elemental mercury removal from flue gas.
    Yuan Y; Zhao Y; Li H; Li Y; Gao X; Zheng C; Zhang J
    J Hazard Mater; 2012 Aug; 227-228():427-35. PubMed ID: 22703732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of homogeneous and surface-catalyzed mercury(II) reduction by iron(II).
    Amirbahman A; Kent DB; Curtis GP; Marvin-Dipasquale MC
    Environ Sci Technol; 2013 Jul; 47(13):7204-13. PubMed ID: 23731086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atmospheric OH oxidation chemistry of trifluralin and acetochlor.
    Murschell T; Farmer DK
    Environ Sci Process Impacts; 2019 Apr; 21(4):650-658. PubMed ID: 30805573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.