These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 23955120)

  • 41. Trifluralin: photolysis under sunlight conditions and reaction with HO* radicals.
    Le Person A; Mellouki A; Muñoz A; Borras E; Martin-Reviejo M; Wirtz K
    Chemosphere; 2007 Feb; 67(2):376-83. PubMed ID: 17166544
    [TBL] [Abstract][Full Text] [Related]  

  • 42. On the effect of spatial resolution on atmospheric mercury modeling.
    Seigneur C; Karamchandani P; Vijayaraghavan K; Lohman K; Shia RL; Levin L
    Sci Total Environ; 2003 Mar; 304(1-3):73-81. PubMed ID: 12663173
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Uptake of Hg
    Lee H; Kurien U; Ariya PA
    J Phys Chem A; 2022 Oct; 126(39):6953-6962. PubMed ID: 36130723
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Photolytic processing of secondary organic aerosols dissolved in cloud droplets.
    Bateman AP; Nizkorodov SA; Laskin J; Laskin A
    Phys Chem Chem Phys; 2011 Jul; 13(26):12199-212. PubMed ID: 21617794
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Photooxidation of Hg(0) in artificial and natural waters.
    Lalonde JD; Amyot M; Kraepiel AM; Morel FM
    Environ Sci Technol; 2001 Apr; 35(7):1367-72. PubMed ID: 11348068
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An SOA model for toluene oxidation in the presence of inorganic aerosols.
    Cao G; Jang M
    Environ Sci Technol; 2010 Jan; 44(2):727-33. PubMed ID: 20017537
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photodissociation Mechanisms of Major Mercury(II) Species in the Atmospheric Chemical Cycle of Mercury.
    Francés-Monerris A; Carmona-García J; Acuña AU; Dávalos JZ; Cuevas CA; Kinnison DE; Francisco JS; Saiz-Lopez A; Roca-Sanjuán D
    Angew Chem Int Ed Engl; 2020 May; 59(19):7605-7610. PubMed ID: 31833158
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bromine chloride as an oxidant to improve elemental mercury removal from coal-fired flue gas.
    Qu Z; Yan N; Liu P; Chi Y; Jia J
    Environ Sci Technol; 2009 Nov; 43(22):8610-5. PubMed ID: 20028060
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Aqueous Photochemistry of Mercury with Organic Acids.
    Pehkonen SO; Lin CJ
    J Air Waste Manag Assoc; 1998 Feb; 48(2):144-150. PubMed ID: 28081425
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of inlet concentration and light intensity on the photocatalytic oxidation of nitrogen(II) oxide at the surface of Aeroxide® TiO2 P25.
    Dillert R; Stötzner J; Engel A; Bahnemann DW
    J Hazard Mater; 2012 Apr; 211-212():240-6. PubMed ID: 22154121
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A model approach for evaluating effects of remedial actions on mercury speciation and transport in a lake system.
    Kim D; Wang Q; Sorial GA; Dionysiou DD; Timberlake D
    Sci Total Environ; 2004 Jul; 327(1-3):1-15. PubMed ID: 15172567
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The formation of sulfate and elemental sulfur aerosols under varying laboratory conditions: implications for early earth.
    DeWitt HL; Hasenkopf CA; Trainer MG; Farmer DK; Jimenez JL; McKay CP; Toon OB; Tolbert MA
    Astrobiology; 2010 Oct; 10(8):773-81. PubMed ID: 21087157
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Atmospheric fate of a series of carbonyl nitrates: photolysis frequencies and OH-oxidation rate constants.
    Suarez-Bertoa R; Picquet-Varrault B; Tamas W; Pangui E; Doussin JF
    Environ Sci Technol; 2012 Nov; 46(22):12502-9. PubMed ID: 23126588
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of relative humidity and CO(g) on the O3-initiated oxidation reaction of Hg0(g): kinetic & product studies.
    Snider G; Raofie F; Ariya PA
    Phys Chem Chem Phys; 2008 Sep; 10(36):5616-23. PubMed ID: 18956097
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Wet deposition of mercury at Lhasa, the capital city of Tibet.
    Huang J; Kang S; Wang S; Wang L; Zhang Q; Guo J; Wang K; Zhang G; Tripathee L
    Sci Total Environ; 2013 Mar; 447():123-32. PubMed ID: 23376524
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An improved global model for air-sea exchange of mercury: high concentrations over the North Atlantic.
    Soerensen AL; Sunderland EM; Holmes CD; Jacob DJ; Yantosca RM; Skov H; Christensen JH; Strode SA; Mason RP
    Environ Sci Technol; 2010 Nov; 44(22):8574-80. PubMed ID: 20973542
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Annual atmospheric mercury species in downtown Toronto, Canada.
    Song X; Cheng I; Lu J
    J Environ Monit; 2009 Mar; 11(3):660-9. PubMed ID: 19280045
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition.
    Saiz-Lopez A; Sitkiewicz SP; Roca-Sanjuán D; Oliva-Enrich JM; Dávalos JZ; Notario R; Jiskra M; Xu Y; Wang F; Thackray CP; Sunderland EM; Jacob DJ; Travnikov O; Cuevas CA; Acuña AU; Rivero D; Plane JMC; Kinnison DE; Sonke JE
    Nat Commun; 2018 Nov; 9(1):4796. PubMed ID: 30442890
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of Atmospheric Processes on the Solubility and Composition of Iron in Saharan Dust.
    Longo AF; Feng Y; Lai B; Landing WM; Shelley RU; Nenes A; Mihalopoulos N; Violaki K; Ingall ED
    Environ Sci Technol; 2016 Jul; 50(13):6912-20. PubMed ID: 27286140
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Automated Calibration of Atmospheric Oxidized Mercury Measurements.
    Lyman S; Jones C; O'Neil T; Allen T; Miller M; Gustin MS; Pierce AM; Luke W; Ren X; Kelley P
    Environ Sci Technol; 2016 Dec; 50(23):12921-12927. PubMed ID: 27934266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.