These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 23955249)
1. Physiological responses to nanoCuO in fungi from non-polluted and metal-polluted streams. Pradhan A; Seena S; Dobritzsch D; Helm S; Gerth K; Dobritzsch M; Krauss GJ; Schlosser D; Pascoal C; Cássio F Sci Total Environ; 2014 Jan; 466-467():556-63. PubMed ID: 23955249 [TBL] [Abstract][Full Text] [Related]
2. Fungi from metal-polluted streams may have high ability to cope with the oxidative stress induced by copper oxide nanoparticles. Pradhan A; Seena S; Schlosser D; Gerth K; Helm S; Dobritzsch M; Krauss GJ; Dobritzsch D; Pascoal C; Cássio F Environ Toxicol Chem; 2015 Apr; 34(4):923-30. PubMed ID: 25565283 [TBL] [Abstract][Full Text] [Related]
3. Responses of antioxidant defenses to Cu and Zn stress in two aquatic fungi. Azevedo MM; Carvalho A; Pascoal C; Rodrigues F; Cássio F Sci Total Environ; 2007 May; 377(2-3):233-43. PubMed ID: 17391733 [TBL] [Abstract][Full Text] [Related]
4. Copper oxide nanoparticles can induce toxicity to the freshwater shredder Allogamus ligonifer. Pradhan A; Seena S; Pascoal C; Cássio F Chemosphere; 2012 Nov; 89(9):1142-50. PubMed ID: 22749936 [TBL] [Abstract][Full Text] [Related]
5. Enzymatic biomarkers can portray nanoCuO-induced oxidative and neuronal stress in freshwater shredders. Pradhan A; Silva CO; Silva C; Pascoal C; Cássio F Aquat Toxicol; 2016 Nov; 180():227-235. PubMed ID: 27744167 [TBL] [Abstract][Full Text] [Related]
6. Lead and cadmium uptake in the marine fungi Corollospora lacera and Monodictys pelagica. Taboski MA; Rand TG; Piórko A FEMS Microbiol Ecol; 2005 Aug; 53(3):445-53. PubMed ID: 16329962 [TBL] [Abstract][Full Text] [Related]
7. Aquatic hyphomycete strains from metal-contaminated and reference streams might respond differently to future increase in temperature. Ferreira V; Gonçalves AL; Canhoto C Mycologia; 2012; 104(3):613-22. PubMed ID: 22123653 [TBL] [Abstract][Full Text] [Related]
8. Can metal nanoparticles be a threat to microbial decomposers of plant litter in streams? Pradhan A; Seena S; Pascoal C; Cássio F Microb Ecol; 2011 Jul; 62(1):58-68. PubMed ID: 21553058 [TBL] [Abstract][Full Text] [Related]
9. Ligninolytic fungal laccases and their biotechnological applications. Singh Arora D; Kumar Sharma R Appl Biochem Biotechnol; 2010 Mar; 160(6):1760-88. PubMed ID: 19513857 [TBL] [Abstract][Full Text] [Related]
10. Can low concentrations of metal oxide and Ag loaded metal oxide nanoparticles pose a risk to stream plant litter microbial decomposers? Jain A; Kumar S; Seena S Sci Total Environ; 2019 Feb; 653():930-937. PubMed ID: 30759618 [TBL] [Abstract][Full Text] [Related]
11. Natural organic matter alters size-dependent effects of nanoCuO on the feeding behaviour of freshwater invertebrate shredders. Pradhan A; Geraldes P; Seena S; Pascoal C; Cássio F Sci Total Environ; 2015 Dec; 535():94-101. PubMed ID: 25576408 [TBL] [Abstract][Full Text] [Related]
12. Effects of metals on growth and sporulation of aquatic fungi. Azevedo MM; Cássio F Drug Chem Toxicol; 2010 Jul; 33(3):269-78. PubMed ID: 20429804 [TBL] [Abstract][Full Text] [Related]
13. Effects of cadmium and phenanthrene mixtures on aquatic fungi and microbially mediated leaf litter decomposition. Moreirinha C; Duarte S; Pascoal C; Cássio F Arch Environ Contam Toxicol; 2011 Aug; 61(2):211-9. PubMed ID: 20957352 [TBL] [Abstract][Full Text] [Related]
14. Copper tolerant ecotypes of Heliscus lugdunensis differ in their ecological function and growth. Quainoo S; Seena S; Graça MA Sci Total Environ; 2016 Feb; 544():168-74. PubMed ID: 26657362 [TBL] [Abstract][Full Text] [Related]
15. Potential of the salt-tolerant laccase-producing strain Trichoderma viride Pers. NFCCI-2745 from an estuary in the bioremediation of phenol-polluted environments. Divya LM; Prasanth GK; Sadasivan C J Basic Microbiol; 2014 Jun; 54(6):542-7. PubMed ID: 23712577 [TBL] [Abstract][Full Text] [Related]
16. Growth and laccase production by Pleurotus ostreatus in submerged and solid-state fermentation. Téllez-Téllez M; Fernández FJ; Montiel-González AM; Sánchez C; Díaz-Godínez G Appl Microbiol Biotechnol; 2008 Dec; 81(4):675-9. PubMed ID: 18762938 [TBL] [Abstract][Full Text] [Related]
17. Degradation of the xenoestrogen nonylphenol by aquatic fungi and their laccases. Junghanns C; Moeder M; Krauss G; Martin C; Schlosser D Microbiology (Reading); 2005 Jan; 151(Pt 1):45-57. PubMed ID: 15632424 [TBL] [Abstract][Full Text] [Related]
18. Fungi in a heavy metal precipitating stream in the Mansfeld mining district, Germany. Ehrman JM; Bärlocher F; Wennrich R; Krauss GJ; Krauss G Sci Total Environ; 2008 Jan; 389(2-3):486-96. PubMed ID: 17928036 [TBL] [Abstract][Full Text] [Related]
19. Oxidoreductases provide a more generic response to metallic stressors (Cu and Cd) than hydrolases in soil fungi: new ecotoxicological insights. Lebrun JD; Demont-Caulet N; Cheviron N; Laval K; Trinsoutrot-Gattin I; Mougin C Environ Sci Pollut Res Int; 2016 Feb; 23(4):3036-41. PubMed ID: 26310699 [TBL] [Abstract][Full Text] [Related]
20. Polar vineyard pruning extracts increase the activity of the main ligninolytic enzymes in Lentinula edodes cultures. Harris-Valle C; Esqueda M; Sánchez A; Beltrán-García M; Valenzuela-Soto EM Can J Microbiol; 2007 Oct; 53(10):1150-7. PubMed ID: 18026207 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]